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APPERDIX AI
EXTEEDING FILE SYSTDES TO DISTRIBUTED SYSTEMS

N. J. Livosey

A.1 INTRODUCTION

This paper examines the so-called 'meta-system' approach to Distributed

System construction; that is, constructing a d system by utilizing

"" existing local operating .salts. In particular it looks at some of the Lill
system problems that may be encountered when such an approach is followed.
These problems are simplified if one has the opportunity to rewrite the under-

lying local operating system (see lOppen 81), for example], but typically,
this is not the case. Since it is impractical to look at all existing local

operating systems, I focus on a particular local operating system, Primos,

,* with its overlying user interface, the Georgia Tech Software Tools Subsystem.

However, these comments do not apply to just this environment; much of what is• ,....'

said is probably true for many existing local operating systems. .a

-eA. 2. RMM-.-. , A ,2 . IKIl .QD LR .".'

The problem with most existing local operating systems is precisely that

they do preexist the design to distribute. Although a local operating system

should have some autonomy, it should also have been designed with an eye to

integration, if it is to be useful in a distributed system. There seem to be

two classes of problems in extending existing operating systems to new

purposes:

Detlonoiesm in the existing local operating system can make it very

difficult and involved to perform new functions in a reasonable way. There

are very few things that any operating system will make it impossible to do,
but If the system was originally built without them in mind, it can lead to

contortions, and contortions lead to inefficiencies.

*Biases* in the design of an existing system can often lead one to

extend it in certain ways, without fully exploring alternatives which might be

equally valid, and the ease or difficulty of adding features to an existing

structure can close off debates on the best new features to add. 11%.%

.~ .'a.9. J

% %.
%a 

-a.i
% % % % .a ~

L9 L. a . . . - .- a . * * .* p
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The solutions suggested in this paper are intended to avoid these

problems at minimum cost, rather than to produce radical, but expensive,

solutions.

.. A. 2.1 hisaL Ad And sinr, ..
""eta distributed operating systems are produced by introducing a

network operating ,,stem on top of previously separate local operating

systems. This network operating system must at least make it possible to

allow a job on one machine to access files on another, and it should

preferably allow a user on one machine to run a job on another without having .

to log on to the second machine.

File naming is a problem area in meta-distributed systems because the

naming 'space' of these systems is usually the union of the naming spaces of

their component local operating systems. In order to address resources in the .

total system, one needs to introduce mechanisms to allow the user to address

outside the local system on which he may be running.

Ideally, one would like a single name space for the entire system, 99@

rather than connected individual name spaces. Why is this not easy in a meta-

system?

A.2.1.1 File System Naming

We need first to allow across-machine ftile access. This is easily

• -achieved by running a server process in the system which accepts requests from

jobs running on one node to access files on another node. This may be a

central process or a distributed one.

Usually this server is capable of dealing with both local names, which

are interpreted in the name space of the current machine or of a local dire*-

tory, and global names, which are interpreted in a space consisting of all the

machines which are currently operating. From the user's point of view, there

are also relative and absolute names. For example:

e The unadorned pathname:

macros

might be relative to my current directory (set by the 'cd', "
change directory command), and returns a file called 'maros',
if it exists, in the directory to which I am attached.

.....- 9

%1" "% N,

"_-: ,;--~~~~~~~~~~. ... ._'•':.:.. .-5,"-,-,,:-,-.- -...-. '.-'... .- '-.............-...v . . -. .. 9 .'- .. *-. .,. 9.-. "'."-'9-
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* The absolute pathname: -

/uc/jon/macros

returns Imacrost which is on node C, if node C is accessible,
irrespective of which machine I am currently working on. The
pathname element /uc simply indicates machine C in the network.

• The relative pathname:

//Jon/macros

is a pathname relative to the current system, and returns the -
"nearest" file called tmaOrOSQ , "Near" is determined by the way
in which the logical disks are ordered by the systems
administrator. Local disks are always "nearer" than remote

Ii disks.

File systems are only special cases of name-to-address mapping

mechanisms. At each directory level in a file system, you can tell a direc-

tory the name (of a file or directory) in its name space, and it will respond

with an address, leading you to the file, or to a directory whose address

space contains the rest of the pathname. So, I

/ub/jon/macros

is interpreted (mapped) first by a top-level directory which strips off I/ub' V.
and maps you to a directory iJon' on a particular node, node B, where a direc-

tory strips off 'Jont and maps you to a file 'macros' in its address space.

Graphically, this can be represented as a tree, where each path through the

tree leads to one leaf:

root

/ \. -"

ub uf "." "

fred Jon Jon/ \ / \ / \ 2Z
/ \/ \/ .-..:

other macros other macros other macros
Here, /ub and /uf point to the roots of the file systems on machines B and F.

A relative pathname starts at any given internal node of the tree

(determined by the last 'od', change directory, comand) and an absolute path-

name starts at 'root'. Since there is only one path from a given internal

node to a given leaf, there is no ambiguity, once we know at which internal

node to start.

• o • , . , ° . • . . . • _ • . • . . -. . . . . = - .-. • •.. . .-. ° . ,m



Page 4 Extending File Systems Appendix A

A.2.1.2 Aliasing

In addition, I may also have a t or AlUas file which will perform 9
transliteration or aliasing of file names allowing one file name to masquerade
as another, but which will not perform any interpretation (i.e. mapping).

The interpretation is performed after the aliasing.

One can imagine a routine epjag() which performs filename aliasing

before passing the expanded pathname on to an o9en() routine which performs

directory searching to find the actual file intended. The alias filename must

appear surrounded by '=' signs and if the alias file contained the line: .
V=....

I macros /ub/jon/progs I

then =macros= would be transliterate into /ub/jon/progs by expand() before

interpretation.

I might decide that =zacrosu should translate

into any one of:
/uc/jon/progs
//Jon/progs
progs

and the file I finally get would depend on the interpretation which is per-

formed by openo, after zmacros- is transliterated, by expando. In other

words, it would depend on the current directory if we transliterate into a

relative pathname, and not otherwise.

Templates introduce a new mapping which is not a tree and which does not .

map from the internal nodes of the file system, set by 'od', but from the

alias or template file of 'ourrent user', set by 'login'. A template file is

attached to an account not to a directory, and does not change as a user works

on a given node of the system. It is set as he logs on.

However, a user may have accounts on more than one machine. Since tern-

plate files are per-account, and not pert-user, they are a local-system concept

which has to be extended in some way in extending the system.

Suppose 'Jon' has two template files, one on logical disc ub, and one on 0

logical disc uf.

/ub/Jon/template:

I macros I/Jon/macros I
other /ub/Jon/other I-O

• -. , .,.:-

I0

" . .. ,. ,,' .. -. ., . . . .. . . .. . .. .' ,. ' .' .' ," ,. " -, : .'.., ', '. ', ,' '. .' '° '. ..
.. . . .,. . . '' -", .. .,.. .-. . . . .. -. .,.• . ,-. - , , . .,. .,.. - . , .. .,. .,. - . .
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~.. frluf/jon/template:
J" .4

*

. .. y

I macros llJon/macros I .
I other /ub/jon/other I . -'

Then when tJon' is logged on to machine B, the following mapping will be

superimposed onto the file system by templates:

- root -

I -.. '-

ub ut

fred Jon ion

'-- ~other macros other macros other macros"--''

-..-., - --:ma c r o sI I - I,..

------------ - other II _ _ _ I-. -.'

while if 'jon' is logged onto mohine F, the mapping changes to:

- root -/\
/\

-d-/ \ub uf

fred Jon Jon

-,/ \/ \/\

other macros other macros other macros

macrI ors .% -

0. .. other ,-"'

The mixing of transliteration (templates) and interpretation (direc-

tories) leads to some unexpected 'features'. For example, if the text format-

ter program 'fat' which reads text source ftiles and formats them for printing,

also allows me to read in a file containing formatter macro definitions by

Including a line:

.so filename

, ... '- -
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in my formatter source file, then I can make up a text formatter source file

'file.fat' which calls another file 'mrectos' using the text formatter's .°o- -
feature: .

file. frt

s .o =macros= I
I rest of file I

Now if I format the file, using the command line:

fnt file.fret

the formatter will first read f1j.fu and on the first line find the

reference to file =macros=. In attempting to open =macros= it will first get

it transliterated according to my templates file, then read the =macros= file

(whichever one is finally opened by expand() followed by open()) and use its

contents to format the rest of the document. Supposing that I am on machine

B, and that my templates file on thLt machine contairn the line:

macros //Jon/macros

then it will be transliterated to //jon/macros, interpreted according to the

machine I am currently on, and finally read in as file /ub/jon/macros.

If I were logged in on machine F, with an jdftatj templates file, and

read in the same formatter source file ,file.fat', then although expand() per- "w

-. formed the same transliteration, the macros file finally read would be

/uf/jon/macrosl This might or might not be an identical file.

In other words, there are two levels of potential confusion: ..

1. You can have dissimilar template files in your accounts on
different machines, and then the same template may be
transliterated differently.

2. Even if the template is transliterated identically on the
machines, the fact that you may be in different directories on '
the different machines may lead to the interpretation of the
transliterated template being different.

Clearly, to this, and to many of the subsequent difficulties I shall raise,

there are purely administrative solutions.

I can avoid the first difficulty by having identical templates on all iL.

machines, and undertake to keep them all identically updated.

I can avoid the second difficulty by making all templates transliterate

into absolute pathnames:

macros /ub/jon/macros I-gI

However, the fact that I have to solve these very obvious problems by

. :2-4 .'-

.- # - : - -- x -* --N * 4 .-- -. ''J " " """ .e.'.-. ...... . ..-..- 4 ". "' . -. . . . .."". . . ..".'" ""' """"' " "" " ' "

%.. %* %4 %*-

%.*4,4 N4 4 *4
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user action suggests that there is some underlying problem which is not being

solved at the operating system level.

Even if I adopt these administrative solutions, there remains a problem. .
* ". ..*

For example, if I grant READ permission on 'file.fmt' to another user 'ftrd',

when fred reads Ift1e.fatt, the formatter will try to transliterate =macros=

according to fred's template file, which may contain no line for =macros=, or

worse, a line:

macros //fred/some_other_file

in which case fred will format my formatter source file with an unintended

macros file which may be grossly Inappropriate, leading to a formatter crash;

or it may be very subtly incorrect, leading to a successful run of the format-

ter and the production of an incorrect but plausible document.

Fred ought to have access to my template file when formatting my

documents. In fact, Fred ought to be me, or rather, be me in this project.

In order for the operation of formatting the document to be carried out

correctly, interpretation and transliteration ought to be carried out per-

project rather than per-user.

The main problem is the mixing of two operations, transliteration and

interpretation, which look similar but are quite different. Transliteration

is always carried out in the context of the acount (not the A=r, since he .-..

may have accounts on several machines), while interpretation is carried out in

the context of the file system subtree Identified by the pathname.

In sumary, if you tie together several existing file systems by connec-

ting their roots, then a single user's files will no longer be in one file

system subtree, but in several, one on each machine. This leads to

inconsistent file pathname mapping.

Operations are performed per-account (such as template handling) which

ought rather to be performed per-user. %

If this is resolved by administrative measures, such as the use of -

absolute pathnames, the user will be forced to be aware of his physical loca-

tion in the system, rather than of his logical location.

A.2.2 ZU MtrM At gtV-

Given that file system structures should reflect some logical

rolationship between the files that they contain, some other questions arise.

7%% %" •
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There does not seem any good reason why a user should not be able to

generate and use a file system subdivision (not a subtree) which crosses disc

boundaries, and even overlaps with other subdivisions. Directories should be

able to contain entries pointing to directories or files on other disks.

A.2.3 Distribution
Now we can take a look at the consequences for a distributed system.

One finds that in a distributed system the concepts of transliteration and

interpretation change in subtle ways. Even in a centralized system, we have

template mappings which change according to login account, as well as file

system mapping which do not change if absolute pathnames are used, or which do

change, if they are relative pathnames. The only reason that relative path-

names change their meaning is that 'login' implies 'ad'.
-- F.7

In a distributed system the problem is complicated because jobs can run

on one machine, with the file system mappings appropriate to that machine, but

with the template mappings which have been imported from the machine on which

the user is logged in. In effect, we have a login' which does not imply a

'cd' (unless we xant to do a remote 'login', in which case it is not clear

what happens).

One thing that a distributed system should try to do is to allow a user

on, say, B, to run commands on remote machines, using a syntax such as:

. "fmt@F file.fmt

In order to achieve this, the command line is sent to the command interpreter

on machine F. Along with the command line is sent the 'current oontext'

(including the template file) of the user. In fact, what is sent is the ii
current context of the account of that user on B, and is potentially quite

different to his context on machine F. (He might, for example, have no .4E

account on F or might not be logged on there at present )"

Now we have the potential for a job run on F from B to produce different

effects from that same job run on either B or F directly.

Suppose we have the same source file Ifile~ftV on /ub.

file. fmt

so =macros=
rest of file "

This file will nt be the file accessed by the command line: 7,1

fmt@F file.fmt

' - .. :% % %. .% " % % % ,% - o _' 0'+ ,e ' . , _ _ - , . _ .
- .

, , - - . . - . . . , . . . . -. , , . - , . . ' - , , - ' - . . - . % - :
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instead, the command line would have to be changed to: j
fmt@F /ub/jon/file.fmt

Now we can send the command line to F, along with the current context, and see

what happens. The remote job executes on F as if executing on behalf of

/ub/jon, as far as transliteration is concerned, since we sent the template

*. i file of /ub/jon along with it. When the formatter on F reads /ub/jon/file.fmt

he sees:

file. fmt

.so =macros= I -ki• ; I rest of file -_

transliterates =macros= into //Jon/macros, for example, and now interprets

/ljon/macros in the context of the machine he is running on, attempting (or

.succeeding) to read a file /uf/jon/macros. In effect the job has run partly

(transliteration) as if belonging to /ub/jon, and partly as if belonging to

/uf/jon. This raises some interesting questions about location information,
and how much of it the user has to be aware of.

And it is not always an answer to suggest that interpretation should ". *.--

also be carried out in the account context sent with the command line to the

remote machine, since some users will want their remote command lines to

access within the context of the machine that they are on. In particular, .

someone who wants to use the remote command line execution feature as 'remote
* .. ~ login' wants precisely that, to transliterate according to the machine he is -.

on, and access files according to the remote machine he is remotely logged %

into. Or does he? Some of these problems can be avoided by simply using

absolute pathnames at all times, but then you solve the immediate problem at

- the cost of giving up the entire template and file pathname interpretation

system.

isI As usual, you can kludge these problems away by totally rigidifying the

system. For example, adopting the rules -.

* all templates map into absolute pathnmes.

* all remote command lines contain absolute pathnames.

e all remotely executed source files call absolute pathnames.
But maybe this is not what is wanted in a distributed system. Maybe I

want to get 'The nearest file called ,maooa', or a further away one if the

nearest node is down". This would amount to allowing the transliteration of a

- @. %. \'

. ,.. . . ... . ... . .  .  . .. . . .'
",' :, " -' , '-,,1.-",,'"."."', ,--.< ' .-. ;, "."," -"'• .?/ '.''*'.. ... "'" " " -" : ".'.:.', '.,'.. N'-< ';'M
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given template to vary from time to time during the execution of a Job. This

would require the file system to behave much more like a database, recording,

for example, if two files called 'macros' are identical copies, or separate

objects. And I would like to have at least some facilities equivalent to

relative pathnames and templates.

A.3 SOLUTIONS
In this section we attempt to present solutions to some of these

problems in a fairly general way. In some cases these solutions call for sim-

ple modifications to the local operating system file system.

A. 3.1 A 2=a= AtcaaUm lila kzm tem
In order to avoid some of the difficulties listed in file system addres-

sing I am suggesting that we use a file system which is basically domain (or

capability) based.

The underlying structure of the file system will be unchanged, and will .-

be tree-structured, but users will be able to set up 'domains' at any point in

the file system to which they have access, which will allow them to address

any files they want in a 'one step' fashion. The files to which a user has

access will be determined by owned capabilities rather than by access list.

We will change the routines expand() and open() to implement the new file

system structure on top of the old. ".". -"

* A.3.2 m and .ml ntatlin
It seems that all the tools that you need in order to construct a

domain-based file system already exist in most local operating systems, since

my proposal basically uses only an extension of the Itemplatel mechanism.

A domain structured file system allows a user to set up a context for .

, himself in the file system at any point. In order to do this he uses local

template files. At present, template files are per user (actually per

account, since there is an individual template file on each machine for each

account) and the merit of templates is that they allow very simple 'one-step'

file name transliteration.

Typically, one now keeps all the files for a particular program in a ....

single directory or subtree, except for central files used by several

projects, and once you have done a 'od' to that project directory, you can

4 then refer to those files using very short relative pathnames, typically only

5?J,

S.- .5.

I ,,
,, • .% ",

-. :,. .. ,-..;,..-:.:..', ,:..',;,-.- _- ,......-.., --_. .'.:.', -. ....-. ,.......--.... .. .. . ...... ,: f ............ J..
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one element long; the name of the file. This only works for files in that.2

directory; hence templates, which allow one-step file naming for files in

other directories.t

One can achieve the same effect in a more consistent way by abandoning

%direct use ot pathnames altogether, and relying totally on indirect use of --

* pathnames through templates. In effect we redefine a directory to IM the tem-

* plate file at some position in the file system.

Consider a user 'Jong who has several projects under development

concurrently. Each project has a program source file; progl.r, prog2.r, etc,
and a documentation file docl.tmt, doc2.fmt, etc. In addition each program
calls an 'Includes file; def.i, which contains some common program definitions

2 used by both programs. When run, each program will read data files data I,

data2. etc.

-- root --

ub uf

Jon

docs proji include proJ2 I

Idocl.fmt Iprogl.r 1def.i Iprog2.r I
Idoc2.fmt I I I'prog2.b I
Idoc3.fmt I I II
ldocl4.tmt I I I I

-5, ~Jon -

proj3 data
I I
lprog3.r idatal
I ldata2
I 1data3
I Itestl

ltest2
4WItest3

5% Now we can build a domain (local template file) for projecti which is

suitable for program development and testing.

%5 %5

i~~~~~:~ %~P C V**..-
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"": testing1:

prog.r - /ub/jon/projl/progl.r
data - /uf/jon/data/testl
obJ - /ub/jon/projl/progl.r
prog - /ub/jon/projl/progl
def.i - /ub/jon/include/def.i

We can build a similar domain for project 3: -".

testing3:

prog.r - /uf/jon/proJ3/prog3.r
-:- data - /uf/jon/data/test3

obJ - /uf/jon/proJ3/prog3.r
prog - /uf/jon/proJ3/prog3
def.i - /uf/jon/include/def.i

It may be worth noting a few points here:

* All pathnames in the domain file are absolute; they all have
exactly the same effect no matter where on the network they are
evaluated.

* In use, the domain files allow you to address each file 'in
soope' by a short, one element name. For example, when projecti
is in effect (for SWT, when testingl is the current template
file) editing 'prog .' edits the file /ub/jon/projl/progl.r.
Naturally, you can choose any names for files that suit you. A
one-step operation of changing the domain in effect to testing3
changes 'prog.r' to /uf/jon/proJ3/prog3.r.

* Some files appear in more than one domain file. These are
shared files; for example ldofi'.

* The domains are similar for similar projects. This suggests

that standard domains might be parameterised.

* We can produce other domains which use the same files in
different ways, for example, a domain suitable for documenting
project1:

document 1:

. "prog - /ub/Jon/projl/progl.r
d c - /ub/jon/doc/dool.fmt
defs - /ub/jon/include/def.i
defdoc - /ub/Jon/doc/def.fmt

. A file can have different names in different domain files. When
documenting, we are no longer concerned with binary and object
files, so there is no longer a need to make them visible in the '
domain. We could have another domain for testing: ..-

runl:
prog - /ub/jon/projl/progl
data - /uf/jon/data/datal

- More than one file can appear with the same name in different
domain fil-es; 'data' was a test file in testingl, but a regular

N'-*.--*.l. '.... -..

Y ',,' ,,' ' ' ',v~~~~~~~~~~~~.. .. :...;.. :....... . . .. %.. /.............. .......... ...-........-
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data file in runi. .

*Once again, at run time we are not concerned with rile prog.r.
Once a program has been compiled we no longer care about its
source and object files. .0

A -3.3 2&U&n D1nAR
Templates are taken from whichever domain rile is in effect at a given

moment, so we need a coummand which will transfer us from the current domain --

rile to a new one. If we are currently testing projecti, and we want to
switch to documenting project3 we might type

cd document3
The effect of the cd coimmand is to make document3 the current domain file, to P
make all the files listed in testingi inaccessible, and make the files listed
in document3 accessible. *'4

We might choose to have testingi disappear, or to have it pushed onto a domain >1
stack, from which it can be recovered by a 'pod' (pop domain) command. Maybe
we should also have an explicit 'pudI (push domain) command)

Of course, the new domain file used by 'ad must appear in the current
domain file, so we shall have to modify testingi and document3 so that we can

execute the led' coand:

testingi:

prog.r - /ub/jon/projl/progl.r
V-data - /fu/ jon/data/testl

obj - /ub/Jon/projl/progl.r
prog - /ub/jon/projl/progl
def.i - /ub/jon/include/def.i
next -/ub/jon/domains/dooument3

document3:

prog - /ub/jon/proJ3/prog3.r
doc - /ub/jon/doc/doc3.fhlt
defs - /ub/jon/inoludefdef.i
defdoc - /ub/ jon/doc/def. fait
next - /ub/jon/domains/testingl

*Now, when testingi is in effect:

cd next

switches us to document3, at which point the effect of:

ad next

is to take us back to testingi If we want to do something more than switch

back and forth between these two domains, one of them will have to contain the
name of some other domain file: *~

4%%
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... ...

testing1:

prog.r - /ub/jon/projl/progl.r
data - /uf/jon/data/testl
obj - /ub/jon/projl/progl.r 6
prog - /ub/jon/projl/progl
def.i - /ub/jon/include/def.i
next - /ub/jon/domains/document3
other - /ub/jon/domains/testing2

'Other' is the name of another domain file we might wish to use.

testingl:

prog.r - /ub/Jon/projl/progl.r
data - /uf/jon/data/testl
obj - /ub/jon/projl/progl.r
prog - /ub/jon/projl/progl
def.i - /ub/jon/include/def.i
next - /ub/jon/domains/document3
other - /ub/jon/domains/testing2
out _ /ub/jon/domains/masterdomain

'Out' is the name of some top-level domain file containing (perhaps) the names

of all the domain files we would consider there: *

master_domain:

testingl - /ub/jon/domains/testingl
testing2 - /ub/jon/domains/testing2
testlng3 - /ub/jon/domains/testing3
documenti - /ub/jon/domains/documentl
document2 - /ub/jon/domains/document2
document3 - /ub/jon/domains/document3
run1 - /ub/jon/domains/runl
run2 - /ub/jon/domains/run2
run3 - /ub/jon/domains/run3

We might say that 'master_domain' is the 'root' of the domains.

We can itu tiiz our work as we structure our file system, by restrict-

ing the domains we can reach from the current domain. It may be highly

appropriate to have document1 as the a= domain you can get to on exit from

testing1. This would enforce good habits of work.

A.3.4 ZIM-

File system domains should have the same rules as capability system-

s[Cook 79].

Every file listed in the current domain is accessible.

No file not listed, including other domain files, is accessible.

The domain file, Mt the directory, gives the access rights to a file.

Access rights should be listed in the domain file. For example:

-,-'' %-,
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testingl:

prog.r - 'ub/jon/proj1/prog1.r RW
data - /uf/jon/data/testl R
obj - /ub/jon/projl/progl. RW *.-

Vprog - /ub/jon/projl/progl EX
'Vdef.i - /ub/jon/inolude/def.i R

next - /ub/jon/domains/document3 ED
other - /ub/jon/domains/testing2 ED
out /ub/jon/domains/mstr__domain ED --

gives read/write access to 'prog1,rt, whereas:
'*1 document3:

prog -/ub/jon/proj3/prog3.r

Sdoce /ub/jon/doc/doo3-fmt RW
defs -/ub/jon/include/def.i R
defdoo - /ub/jon/doc/def. fat R
next - /ub/jon/domains/testingl ED

only gives read access to 'prog3s, (You ought not to be able to modify a
program while you are documenting it.)

The domain rights are:

Ri - read/write data
R - read data
EX - execute data
ED - enter domain
RD - read domain
W D - write domain

VRights on domain normallr' only allow you to enter it (ED). You are not
allowed to read or edit the current or any domain file unless you have RD or
WD access to it, and this must be specified in the current domain file. For
instance:

master_domain: p--

testingl - /ub/jon/domins/testl ED
testing2 - /ub/jon/domains/test2 ED

4testing3 - /ub/jon/domains/test3 ED
docuentl - /ub/jon/douains/docl ED

documnt2 /ubjon/oma~is/d.2 Edocument3 - /ub/jon/domains/doc2 ED
dount3 - /ub/jon/domains/doc3 ED
run2 - /ub/jon/domains/runl ED %
run2 - /ub/jon/domairs/run3 ED
tesng - /ub/jon/domains/run3l ED
testingi - /uh/jon/domains/testl WD
testing3 - /ub/jon/domains/test3 WD

L ~allows you to enter several domains, and also to modify testingl, 2, and 3.

Otherwise, the domain files should be unwriteable to the user. He
should not be able to change his current domain setup informally.

%V
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However, once you have modify rights on a domain file, you can change it
with the editor.

Domain enforcement is performed by the file system 'open' routine. This

routine is modified so as always to look in the fourrflt' domain file and

translate any filename string given it according to that domain file. If the

string supplied to 'open' appears in the domain file, it is located on the

network file system and opened, but only with the access permissions allowed-.

by the current domain. No file not listed in the current domain is opened,

and an error is returned to the user on failure.

This is a more extensive change than simply to use templates and

absolute pathnames, which can be done with the present system.

The 'ourrent' domain is that in /ub/jon/domains/current.

The effect of the:

od newdomain

command is to perform a:

cp /ub/jon/domains/newdomain

/ub/j on/domains/current

The effect of 'pusht:

pushdomain new_domai n

is first to stack /ub/jon/domain/current, and then copy

/ub/jon/domains/newdomain to /ub/jon/domains/ourrent.

The effect of 'popI is to pop the domain stack into

/ub/jon/domains/current, losing the current contents of

/ub/jon/domains/current.

Domains can be created when the current domain has CD (create domain)

permissions. A domain file entry (capability) can be created for any object

the user owns.

A user can share objects, including data files and domain files, with

other users. I.As

A user's domain file can be sent to another user, with or without

changes (restrictions) on the permissions on its lines.
,- .. ".

When new objects are created, a side-effect is the appearance of a new

line for the new object in the current domain file.

1. %

,4.-..--..4



.r rr z. . rwEV 7 .. .". -"o -J - -. .77 -777 - -w VV * .--

Appendix A Extending File Systems Page 17

This new line can be moved to another domain file if that file is acces-

sible from the current domain (directly or indirectly).

Each domain file for a user appears in a given directory, say IdOmainB'.

Then the effect of a change domain command is to copy the named domain

file into /swt/vars/user/.templates

The routine 'expand' already looks at /swt/vars/user/.template when it O

encounters a pathname containing =string=. Expand then has to be modified to

". assume that AU pathnames which are given to it need to be expanded. Expand

will look in the current templates file (the current domain) and perform

transliterations according to the contents of the file. Strings which do not f,

appear in the current domain will not be transliterated, and error will be

returned.

A.3.5 LAMdflesM

So far we have only mentioned data files, while in fact we could also

deal with commands in the same way.

In most systems, each user has a (static) 'searokiule' which records

the order in which the command interpreter should search certain directories

* *" for the commands that he runs. When the user invokes load', the command

interpreter will run the command of that name which is found earliest while

searching the directories in 0seaok.ule.

In a domain-based file system, each domain file can clearly contain a

new 'searohule' and that means in turn that while using another user's

domain file, you also inherit his IsearohksuleW. To a very large extent, this

means that you beocome that user, since you not only process his files, but you

are constrained to process them in the same way as he, and using the same com-

mand libraries.

A. 4 .UNL!&BIRON=
We now consider some problems which cannot be solved without some

changes to the underlying system.

A.4.1 HM~inu BUM
We mentioned above that some context problems can be avoided by using

absolute pathnames at all times, but this depends on the absolute pathname

feature being available. Files are somewhat unusual objects in having path-

-.......V'.':-. .
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names. Most local operating systems do not generalize naming concepts to all

objects. There is no multi-level pathnames translation scheme such as file

pathnames, for library programs or physical devices (although these facilities

do exist in some local operating systems, such as Multics). .

% A. 4.2 Ja hbaa
Some command languages have both local and global command variables,

which raises an interesting question in a distributed environment; where

.. should they be evaluated? Local variables are defined only in the activation

of the shell program in which they are set, while global variables are

associated with a user rather than a shell program (and they are stored in a .. ,

varables file when he logs off). He can also save them at any time using a

-. -. save command language command.

This raises the question of the Isoopel of variables. Supposing that a

~ *. process on A spawns a remote process to run on B, presumably the variables

* - file of the user is exported to the remote process. What happens if a

variable is changed?
echo [vara]

set@B vara = newvalue
echo@A [vara]

" What happens if a variable is changed, and the remote command line invokes a

'save' function on the variables. Does this cause the new variables to be

saved? And then can the original job on A also do a 'save?

A. 4.3 .gm--nd LnNUM flnZMAt
Command language functions can return a single success code directly in... ,--

such a way that it can be evaluated in a command language 'if' statement.

- This means that the command line:

if [function] then S1 else S2;

executes command language statement S1 if [function] returns TRUE and S2

otherwise.

"- This is going to have odd results unless [function] is executed on the

-F-, same machine as the 'if'. If the 'if' assumes different context information
" to that assumed by the function (for example, a different interpretation of

relative pathnames) then there will be an inconsistency.

Some languages allow events (conditions) external to a program to be

-. * -* % .

- . ,..-
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signalled to it in the form of a software-implemented interrupt. It is

interesting to speoulate what would happen if we declared an on-conditon on

one machine and raised the condition on another.

A. 4.5 .on~auW t

Other problems in extending single-machine systems to run on multiple

machines are easily solved by adding extra software over the original operat-

ing system.

Some problems are not so easily solved, either because of addressing

deficiencies, or because results have to be returned to an indeterminate

location.

. . . . . k . 4.

4b. 
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~~'.1

APPENDIX B -ll

INTEPRITING AND COMPILIN COMMD IITEPRRTEnS

N. J. Livesey
, "01

A command interpreter is a program which typically establishes the

interface between the user and the operating system performing a translation

from the input commands into the form which the operating system understands.

We contend that there are, in fact, two rather different forms of command t

interpreters, those which execute commands directly (which we call 'compiling

command interpreters, " ) and those which, because of a gross mismatch between

the world as the user sees It, and the world as understood by the operating

system, have to intervene at almost every stage of the execution of the user's

commands (which we call 'interpreting command interpreters").

This note is a proposal for a AQMnI±na command interpreters for use on

an FDPS (Fully Distributed Processing System).

It first examines the differences between interpreting and compiling

command interpreter's, especially with respect to their 'computational power'

and the run-time overheads that may be expected from each.

It then argues that it is possible to produce a command interpreter of

the compiling rather than the interpreting kind for an FDPS and supplies a

theoretical framework for such an interface.

It finally suggests a method of implementation for a fully distriuted

A2=ai.ng command interpreter.

B. 1 . 1 . nUJn VusAr L ,-.u.

In this section we define the two kinds of command interpreters. An

.lnt ernrin o nA nd int reer is a command interpreter which is invoked to

carry out each individual command on a command line. A AgMR±ngd .&.5..

. inarnrtar is a command interpreter which is invoked to scan a command line,

compile it into some intermediate representation, and issue the intermediate

representation to the operating system in one step. t

, S..'..

.r- ' .
- . 
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B. 10 2 .Lginand L a UM "

In this section, we explain how the two kinds of command

interpreter's would handle a simple command line:
int file.fmt I os I sp

This command line is a 'pipeline' (a sequence of operations in which the

result of one operation is immediately "piped" to the next operation) which

calls three commands in series. 'Fmt' is a text formatter, 'os' is an over-

* '. ~ strike and underscore processor, and 'sp' is a line-printer spooler. The file "4'

'file.fmt' is input to the formatter. The command line is a pipeline in the

sense that:

1. The commands 'fmt', 'os', and 'ap' are filters, programs which
will take a continuous stream of input, perform some trans-
formation on it, and produce a stream of output which can be
'piped' to another filter.

2. The output from one command can be redirected to be the input
of another filter, or to some file or device. In this example
the output from 'frt' is piped to the input of 'os', and the

-. final output of 'sp' goes to a line-printer.

A interpreting command interpreter would handle this command line by

first parsing it to find its three pipeline nodes (frt file.fmt), (os), and

(sp), and would then run the first, the formatter, directing its output to an

.4' intermediate file 'tempi', then, when the formatter terminated, run 'os' with

'templ' as input and 'temp2' as output, and finally run 'sp' with 'temp2' as . .

input, and the line-printer as output.

The compiling command interpreter would parse the command line in the
..- same way, but would then cause the operating system to set up a separate '-

process for each command line node, with inter-process communication 'pipes'

-".. between successive nodes, and allow the node processes to run concurrently,

communicating through the inter-process communication 'pipes'.

B.1.3 aA ±ALL = 2MI oi Aend a rMau.
One reason for the difference in these two modes of operation lies in

operating system structure, in particular the treatment of processes. The

process primitive in a system can be identified with (at least) the user or

with a task. For example, in Unix, a process is identified with a task. It", ... , ..

consists of an identifier, an address space, input/output ports, and a process
%"~state, so that it can be separately scheduled. Unix processes can create""-

other processes, or can arrange to run a new program in the address space of

the current process, destroying the program presently running there. They can

4--.. -. 4 ~ *~ 4 *~ .4*4~ . ..-...- 4
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also communicate with any other process whose identifier they know. Inter-

process communication can be through memory buffers. A user can have several

inter-communicating concurrent processes running on his behalf. In O

particular, his command interpreter can create several processes from one com-

mand line to run the elements of a pipline concurrently.

In a system in which 'process' is Identified with the user, a process

represents the entire state of an on-line user, and might, for example, be. -

tied to his terminal, and contain his command interpreter running in shared

system space. If the user runs a new program, it is loaded and run in the

address space of the 'user' process, replacing (and destroying) the previous

program run there rather than being run in the address space of a new .

concurrent process, and there is little idea of inter-process communication,

except through the file system. Successive programs running in the user

process communicate by writing intermediate files, and one program has to run

to completion, and close the intermediate file which contains its results, and

exit, before the next program can open that intermediate file and read it as

input.

B. 1. 4 A A ~M" GQmaVA~flhf L°-

There is an intermediate form of command interpreter, found in the SOLO

operating System.

In the SOLO operating system the single 'user' process maintains a

'program stack' so that one program running in the process can invoke a second

program, at which point the first program will be suspended, rather than

destroyed, and its state pushed on the program stack. The second program in

turn can get itself en-stacked by invoking a third program. And so on.

At some point, a program terminates, and then the top program state is -

popped off the stack, and that program is resumed. At any time, the stack

represents the states of several suspended programs.

Bo1.5 . mmo~etP n frx

One can show the differing power of the kinds of shell, by considering

them as computational machines. Intuitively it seems that:

1. A single process command interpreter is equivalent to a Turing
machine with a one-way read-write head. '

2. A UNIX (multi-process) command interpreter (called a "shell")
is equivalent to a Turing machine with a two-way read-write
head.
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3. The SOLO command interpreter is equivalent to a Turing machine
with a single pushdown.

Cases 2. and 3. are the same power, but case 1. has lesser power. In

particular, case 1. does not allow pipeline elements to be connected by pipes .

in two directions. All single command lines have to be capable of being ,

serialised. (Although, of course, one is allowed to execute a single command

line several times by 'looping'. This involves re-executing the individual
commands of the command line pipeline). From now on we forget case 3. -

B.1.6 Tmnd Im
There are some obvious differences in elapsed time to execute the same

command line.

1. Does not allow the exploitation of concurrency (parallellism)
in the pipeline.

2. Where concurrency exists, it can be exploited. In a single-
processor system pipeline elements which do not depend on one
another can run in any order, but concurrency need not lead to
any elapsed time saving. In a multiprocessor system one can
get true physical concurrency.

B .l1 .7 .Q a h g d . .-'. "4 54

We can try to evaluate the overhead incurred by the two forms of command

interpreter's. The total overhead is made up command execution time (which

should be the same in any system), shell overhead, and inter-process com-

munication overhead.

total_overhead = commandexecution + shelloverhead +
inter-process_comunicatiorl.overhead

B.1.7.1 Command Execution

Total command execution time should not differ, whether commands are run
serially or concurrently. Call this time 'C'. This might be affected by

swapping and paging.

B.1.7.2 Command Interpreter Overhead

An interpretive command interpreter will be reinvoked as each element of

the command pipeline terminates (or at least some component of the command

execution code will be reinvoked).

compiling command interpreter is invoked only when the command line is % %

parsed, and when the entire line terminates. The overhead is then

1. overhead = O(n)

2. overhead = 0(2)

,- 4 ."...........-..............-.-..... ..-. ..... ..
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where n is the number of command line elements. 2
Be1.7.3 Inter-proocess Comtuzioation Overhead

We can try to evaluate the inter-process communication overhead incurred

by the two forms of command interpreter's. In either case, interprocess com-

munication involves transferring each block of intermediate results from one I
program to the next, or from one process to another. However, in the case of?LA

successive programs running in the same process, the intermediate results must .%..'7

be written to a disc file, which must then be closed before the next program

can open and read it.

In the case of concurrently running processes the intermediate results

can be buffered, block by block, through central memory.

From previous results obtained on the MININET project, writing to the

file system costs around 1000 ms per block, while buffering through central

memory costs around 1 ms. per block. Then we have:

1. overhead = 0(10000m)

2. overhead = 0(m)

where m is the number of blocks of intermediate results transferred.

B.1.7.1 Total Overhead

.4, Combining the results of the previous two sections given the total over- .

', ,head incurred by the two forms of command interpreter's.

1. total C + 0(n) + 0(10009m)

2. total: C +0(2) +0(m)

B. 1.8 hA i..-

The difference in elapsed and total time is clear, even for a single

processor system. For a multi-processor system we conclude that a compiling
:. -, comand Interpreter, capable of taking advantage of the parallelism in a corn- ---

mand line, is necessary.

1. 9 A DIalrabM ggmnd I.rgaa r
, For purposes of comparison, here is an outline of an interpreting com-

--, isand interpreter for an FDPS. The basic ideas are:

.. , .4 1. A command file can be parsed once and for all to produce a
graph whose nodes are individual processes (We take the view

ri ! that processes are tasks, not users), and whose directed edges S
1" represent inter-process communication data flow.

,.44

\i,. .. . .'
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2. The graph can contain choice (i.e. decision and/or selection)
nodes and iteration. (The command file lines are not neces-
sarily serialisable.) The graph can contain choice (i.e.
decision and/or selection) nodes and iteration.

3. In order to exploit the parallelism, inherent in the process
graph and also present in the particular hardware oonfigura-
tion on which we are currently running, we must be prepared to
d a representation of parts or the process graph to
the processors on which particular processes are to be run.

4. In order to ditibt the information contained in the graph
we treat each node as a single unit and attach to each node
(representing one process) exactly the information needed to
connect that node to its neighbors in the original graph and
to handle any synchronization which may arise. Its neighbors
in the original process graph are those process nodes to which
it was connected by inter-process communication flow edges.

5. Then we call a And jok distribution in
order to find out where each process is in fact to run.

6. We then send the connectivity information for each process to
the processor on which it is to run.

7. Finally, dirbud ntl will use the distributed connec-
tivity information to set up Inter-process oomunication
between concurrent processes in a given processor and inter-
process communication between concurrent processes running in
separate processors.

The rest of this document suggests ways of parsing a command file into a

process graph, and ways to distribute the connectivity information so that

DiControl can use it on physically separated processors.
The information which is distributed so that local elements of

Distributed Control can run the complete command file consists of IPC towns.

Two tokens, a send and a receive token, are sent .out for each edge in the
original Process Graph.

We have not specified exactly what process graph edges represent, apart

from representing IPC. A single edge might represent a Xr±jLkrA pair. a

communication line, a message buffer being sent, a synchronizing signal, or :.

the action of one process creating another. All that we require is that an

edge has two end-points which are processes (We do not even require the two

processes to exist at first. Perhaps one of the processes is being created,

or dying).

For an edge, we distribute the .Ajg token to the process which is

initiating the IPC transfer represented by the edge, and the reeive Jtkmn ta
.thet process which objte c A f the In transfer. .- " .

-.-. e
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Distributed Control uses the tokens at run-time to implement 
distributed

• .system control.

B,2 1RQOZ2M GRBAPH COMPLATTON
B.2.1 Pocenaa Grap Lmn,,,

A command file can be represented as a graph, with processes as nodes

and inter-process communication represented as directed 
edges. This graph can

be specified in a specialised programming language, the Process Graph

Language.

The translation of a process graph proceeds in six stages:

1. Specification of the process graph in process graph descrip- Vile

tion language. This language is described in the next see-

tion.

2. Parsing of the process graph description language program.

Detection of syntax errors in the process graph description

language program.

3. Construction of the pr pn graph from the process graph

program. The precedence graph is a directed graph whose nodes .

represent IPC, and whose edges express the precedence

relations between IPC. This will be explained further below.

41. Checking of the precedence graph. Detection2 of semantic
errors in the process graph description language program

5. Translation of the precedence graph into IPC tokens. Tokens
are used at run-time to enable the operating system to enforce

the precedence relations between IPC which were laid down in

the process graph.

6. Distribution of the processes of the process graph, along with

their IPC tokens, according to instructions issued by .Resn.fe

allt and work distriut n.

7. Run-time enforcement, by D conlrl , using the IPC
token lists.

B.2.2 froas at k h LanaUt ina. ace==

Here is a simplified grammar of the PGL. This is not intended to be a

comprehensive definition of the grammar; merely a summary around which to

build a description of the process graph description language compiler. For

the full grammar see [Livesey 6]. The semantic actions to be taken upon the

satisfaction of each production are given in the right-hand column below each .

production as a section number, referring to the rest of this section.

' .I. *" % -*
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a..,<process graph> : 'begin' <pg head> <pg body> lend' B.2.2.1

<pg head> ::= <prog def>* <process def>' <type asg>f B.2.2.16
<edge def>*

<pg body> : 'begin' <stint list> 'end' B.2.2.1

<prog del'> 1 prog:' <prog ident> I==' <string> B.2.2.1

<Process del'> ::= 'process:' <process ident> B:' .2.2.10
<prog ident>

<type asg> ::= 'trans:' <ident, list> B .2.2.2
'root:' <ident list>
'per.:' <ident, list>
'graph:' <ident list>
'edge:' <ident list>

<edge del'> : <edge ident> '::' B.2.2-3
- <process ident> 1->1 <prorcess idenrt>

<pocs idn>'rae' poesiet

<process ident> 'crees' - <process ident>
<process ident> 'dies'ls' <process ident>I

<prog ident> ::= 's'elt ..... 'an' B.2.2-3

<process ident> ::z 'ti' Joe ..... I'tn' B.2.2-3
<edge ident> ::= 'ell It..... en' B.2.2-3

<string> B:n .2.2.3

<stat list> ::= <stint> I<stat list> ''<stat> B.2.2.4

<stat> : <concatenation> B .2.2.5
< binding >I
<concurrent>I
<procedure call>
<choice> N
<iteration>I
<edge ident> .

<concatenation> ::= <stat> '2' <stmt> B.2.2.6

<concurrent> ::= <abut> 'I <stat> B.2.2.7 ml

<procedure call> ::z <proc name> 4(1 <abut> I)' B.2.2.8

<choice> ::= 'if' <expression> 'thdn' <stat> B .2.2.9
or'if' <expression> 'then' <stub> ~_'.* 'else' <stat>

<iteration> ::zn 'while' <expression> 'do' <abut> B.2.2.10

'ao

~ .~ 'A
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We begin by building a very simple process graph from a command file

definition, and showing how it might be handled across several machines:

begin
pr(og; progl = "=bin=/fmt", 

prog2 == "=bin=/osm,
prog3 == "=bin=/sp";

proc: proal= pragi,
proc2 == prog2,
proc3 =- prog3; -

root: prol;
trans: proc2, proc3;
edge: edgel, edge2;
edgel := procl creates proc2;
edge2 := proc2 creates proc3;

edgel < edge2; ,
end;

In this example, we have described the creation of three processes in

series. Process 'proc1', which runs the program "=bin=/fmt", creates process

'proc2', running program "=bin=/os", which in turn creates process 'proc3',

running program "=bin=/sp". The '<' symbol expresses the order of creation.

The exact form of the 'process graph' does not matter, but it might look

4.: something like:

: I I creates I creates
procl ----- - -> proc2 I------- > Iproc3

"(fmt) I I (os) I (sp) I
" I I I I I- _

Enthusiasts of cryptic systems will protest that all this could be more

succinctly expressed as:

ft 1os 1 sp

My only answer is that my lengthy syntax expresses what is actually going on, .5

and that in any case, it can be collapsed to a cryptic form as needed.
a.' -'. -%,.

Note that as yet we have only expressed process creation, and nothing

about the inter-process communication between them. That will come later. .-..

Finally, we assume that the three processes run concurrently on one

machine, or on several. ..

In the next sections, we explain the grammar step by step, and then
expand the example to be more realistic. First, we explain the actions to be ,

taken upon parsing. The explanation is top-down, descending to greater - % ,

........... . . ....- .. ..- .. ....-. ,................. .......... -. .' , ,,', ,,,' ,,., V , ,, . . .- ,.,. . . .,.- .**,**.*,. .. .. .. ,*.*.. . .. ".. - .".-" .." -- = . ,-.. . . . .. -"-." -
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detail.
i ° . . ".

a... B.2.2.1 Process Graph .. ;

In parsing we build up a symbol table, containing the definitions of the

program files, processes, and IPC edges, and a p graph, which defines

the precedence relations between the edges of the process graph.

Upon recognizing: ...-. '-

<process graph> ::= 'begin' <pg head> <pg body> lend'

the parsing of the process graph description language program is terminated,

and the precedence graph constructed (see below), is processed to produce IPC

V token lists.

Upon recognizing:

<pg head> ::= <prog def>f <process def>f <type asg>f .

<edge def>"

the building of the symbol table is terminated, and the parsing of the process

g raph body is begun. If a symbol is encountered at this stage which is not

defined in the symbol table, it is treated as undefined.

In our example, the <pg head> is:

begin
prog; progl =bin=/ft*O

*.. prog2 x= "=bin=/os*,
pro3 == "=bin=/spw;

proc: procl =z progl,
proc2 == prog2,
proc3 == prog3;

root: prol;
trans: proc2, proo3;
edge: edgel, *dge2;
edgel := prool creates proc2;

Uponedge2 :z proc2 creates Proc3; 'end

Upon recognizing:

-"'-' ~<pS body> ::z 'begin' <star list> land'.--..

the parsing of the process graph description language program has terminated,

and the precedence graph has been built.

For the example above, the <pg body> is the single expression:

edgel < edg.2; ~1
: The symbol table contains an entry for each program file (code segment),

process and edge in the process graph description language program. In this

table, file system pathname strings are treated as predefined, program files

a.'%S%

% , .d...-, .. -, • . -, ., . .a, . ,.. , , 4 , , .. , , , , . , . . , .... ...- , ..-.. ., ....... • ... , :,,5 4'.. , r , *:. . %* . ". , . , ., . . , , ,, ... ,. .... ...... ...-.. ,,. , ,, ,,, ,, , ,
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are identified by their file system pathname, processes are defined in terms

of their constituent program file, and edges are defined in terms of their

sending and receiving processes.

For the process graph description language construct

A prog: progl = "progjiameO;

which satisfies the grammar rule

<prog def> ::= 'prog:' <prog ident> 1==1 <string>

we add a node to a linked list of program file definition nodes.-

IprogI

I&prog I--- progi"

A&name------> *=bin-/fmtY

The node contains both a pointer to the program file identifier, and to

the string name of the file in which the program file is-contained.

A process definition node is added to a linked list of process

definitions when the rule:

<Process def> ::Oprocess:' <process ident> 'z'<prog ident>

- ~is satisfied. Every process is defined in terms of its code part; its program .-

file:

I V (process)

!process!

I&proc 1---> wproel"

4,1&prog - ---------- >I progI (program file)

I I I&prog 1---> "prog2"

v &name-,'-----> *=bin=/fmt"

B*2,2*2 Type Assignment

When the grammar rule:

%. -P* - .*- *- .. ,. .
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<type asg> :- 'trans:' <ident list> o

'root:' <ident list> "
'perm: ' <ident list> I
'graph:' <ident list> ,
'edge:' <ident list> I

,.A is recognized, process type is assigned. There are two cases; processes which

already existed when the process graph was created, and processes which are

created during the processing of the process graph. Pre-existing processes

are of two kinds; permanent processes, which exist outside the current process

graph, and the root process of the process graph, which is created by the

nAr-g graph supevisor (a component of Distributed Control) in the course of

process graph execution. These are declared:

perm: processi, process2;
root: process3;

Typical examples of pre-existing processes are resource processes, which

are permanently in existence, and can be included in any process graph

authorized to access them. Pre-existing processes do not need to appear as

-. the receiver of a create edge. All transient processes appear as the receiver

of some create edge.

Created (or 'transient') processes come into existence during the execu-

tion of the current process graph. They are declared as:

trans: process4;
Every created process must appear as the receiver of some sxenat edge in .

the current process graph before it can be used as the sender or receiver

process in a non-create edge. The program file pointed to by the 'prog' field

.4 of the definition node of a created process is used at run-time to create that

process:

~v

Iproo~as

I ft -I---> Oproc2"

I .. . . II&prog - -.-........ > prog ° I

I I I &prog 1---> *prog2"I- - --I'" -

v &name- 1----> "&binu/os"

I v

4,..

' %..( - ....-ad ,
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Until the edge which has the creation of this process as side-effect appears

in a precedence expression, the process is marked as 'not-yet-created' in the

symbol table. If it is used in another edge before it is created, a compile- 6

time diagnostic is issued. After the creation of process 'proc2' from program

file prog2, 'proc2' can be referred to in process graph description language

statements as any other process.

A node in a process graph may be another graph, rather than a process,

and a mesage or signal may be sent to a graph in the same way as to a process.

B.2.2.3 Edge

There are also two cases for e.f In the first case, the edge

represents a And to an existing process, and in the second, a and which

creates a process as a side effect. The first is called a send-append, and

the second, a send-create.

A s is the transmission of IPC from one already existing

process to another. The node which defines the edge therefore points to two

process definition nodes, which must both refer to existing processes; either

pre-existing processes, or created processes which have already been created

in some edge In the current process graph program. The grammar rule to be

satisfied is:

<edge def> ::< <edge ident> ,.:-
<process ident> '->' <process ident>

The edge e4 is from process2 to process3, both pre-existing processes,

and so the format of this edge node will be:

4v

- edge II------ - -4

I"&e- "edge""

I proc -I ------------------- > IprocessII------' I __________.-.'.-----

I proc ----- > Iprocesel I proc 1 --> "process2"

-I I proc -I--> "process3" I I 6
V ' .. . I I I '- ".

:....:, I I -,-.-,'
-- ..... . .I .- - -- %*- -'

The grammar rule to be satisfied for sed-rate is:

. '%

""'/" -I -'
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<edge def> -'- <edge ident> ':='
<process ident> 'creates' <process ident>

In a send-create, the receiving process is created as a side-effect of

the message transmission. The edge node refers to a sending process defini- .

tion node which must refer to an existing process, and to a receiving process

definition node which refers to a created process which is marked as not-yet-

created. At run-time, the program file referred to by the receiving proces-

ses's process definition node will be used to create the receiving process.

In the example below, program file "prog2" will be used to create process

"proc2V.

I edge.

I procl-I ---------------------- > Iprocessl......__ I- - - ,' --:

I proc2-,-....> Iprocessl proc I
I----- I------1I.---"

- Iproc 
"

&prog I. > I prog ,

I I &prog 1->Uprog2"f
------------------- ---- I... '''- '

v II I"" ""' '

During parsing, a send-create edge is marked in the symbol table as a 'create'

edge, and later, when the edge appears in a precedence expression, the receiv- '.

ing process which it creates is marked 'created'. If a process not yet marked

'created' is used in an edge in a precedence expression, a diagnostic is

issued.

The grammar rule for is,&., i:
<edge def> ::= <edge ident> ':'"

<process ident> 'dies' --> <process ident>

This defines an edge which has the death of the sending process as a

side-effect. A message is sent from the first process to the second, and, if

successful, the first process dies.

The grammar rule:

%. .+ .. .. , .. .

%. -% .

" " -".' '' " . -"- ' " -" ' " . ' " ," - .• • "' " ," ' ," " . +". .• ,"""", """""- . . ."""""". "" "'•". •"""""%. . "'
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<edge def> := <edge ident> ':-'
<process ident> 'signals' <process ident>

defines an edge which consists solely of synchronization information passing

from one process to another in the current process graph, or from a process in

this process graph to one in another. No message is transmitted.

For simplicity, we have given the definition of program file identifiers

here as: 0

<prog ident> ::= 'progl' I......... I progn'

The process graph description language compiler can, in fact, recognize

identifiers of arbitrary length, composed of alphanumeric characters, and

beginning with a letter. However, in the rest of this section we shall

'.4 continue to use the suggestive subset <'progl',22. . .,'progn'>. As process

.- identifier, we have used "process1, "process2", etc. As edge identifier, we

have used "el', we2", etc.

B.2.2. Preoedenoe Graph

Here we describe the construction of the precedence graph which is built

in the course of compilation. It is analogous to an evaluation tree in con-

-L ventional compilation. The precedence graph is a directed graph in which one

or more nodes are present for each construct of the process graph description Mew,

language, and the directed edges between the nodes express the run-time time

precedence between the nodes. If nodel and node2 are connected by a directed

edge:

nodel -- > node2

then nodel precedes node2 * The precedence graph may contain lop, correspon- .N%
ding to iteration constructs in the process graph description language.

B.2.2.5 Statement List

A statement list is a sequence of statements 31, 2,..... A statement

list is represented by a series of connected nodes.

A statement is one of the following four types.

B.2.2.6 Concatenation
.4 *

The construct:

S < S2..

which is represented by grammar rule

<concatenation> ::z <strt> < <strt>

leads to the linking of the first node for S2, to the final node of S1. The

* :..,,

*. *% .-. .. '.:o'.°, .4 - . . . . . ,,,-..." o

% '04 %*~
%4 p ~ - - - ' - -

q~ *~. *A.
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statements 31, 32 can be single edges, or process graph description language
* statements.

lv
Iedgel

1 1

I..........

edge1

1S2

B.2.2.7 Concurrency
Each construct indicating concurrent -statements, generated by the satis-

faction of the grammar rule
<concurrent> ::= <stint> ' <stint>

is represented by four node groups; a conourrenoy-begin ()node, the two
concurrent statements, and a concurrency-end (v) node. For example: 31 32

----------

V v

Iedgel edgel

I 1 S 2 I

v -- -- ~--
I I

I-0b-J.
Z: .4. %
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The nodes marked S1, S2, represent arbitrary process graph description 2
language statements. The only restriction is that they should be subgraphs
with a single entry and a single exit., 0

B.2.2.8 Procedure Call

A procedure call is the principal mechanism for communication between

processes and process graphs. The grammar rule for procedure call is:

<procedure call> ::= <proc name> '(' <stmt> ')'

The representation of a procedure call in the precedence graph is:

a V I - . .

Icall1

proc - - > "proc name"

I pars -I---------

II I: """
• '--- ~I---': -. .

I edge"

I I S21

The "proc" field in the node points to the symbol table entry for the

procedure definition, and the "pars" field is a pointer to the subgraph

representing the parameter list for the procedure call. Most process graph

procedures evaluate logical values derived from edge execution, from system or

hardware error checks, or passed down from processes.

B.2.2.9 Choloe

The choice construct is represented by four node groups: Again, S1, 82

represent arbitrary process graph description language statements. The choice

grammar rule is:

<choice> ::= 'if' <expression> 'then' <stmt> I
lift <expression> 'then' <stmt>

'else' <stint>

The <expression> in the jJ statement can itself be a process graph statement

of the type: single edge, process graph procedure call, or bound expression. 0

'I'- * .-. .'

~-.'..'

.r, : L :
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B.2.2.10 Iteration

The iteration grammar rule is:

<iteration> ::= 'while' <expression> 'do' <stmt> 'end'

. Iteration is a special case of choice. The iteration construct is represented

as follows:

I I if 1<----------------'

I cond- I - ----------- >

I T ------------
I F I : -":. _ .

I ,I I'- ""F~

SI edge I ,'--,

I . .. . I 4-. ,

II-I----.-'.'

CndiQig and 82 represent arbitrary process graph description language

statements.

B.2.3 MM fr Task kraph Ia rAUaMa iuk
In the task graph description language there are specification

statements, assignment statements, and expressions. Specification statements

' have been dealt with above. Assignment statements are used in building the

individual nodes of the precedence graph. The precedence relationships

between edges are spcified using expressions, using the operators '', IV,

Expressions may be nested using '(', ')'. As these edge precedence expres-

sions are parsed, a 'precedence graph' is built which is analogous to the

*.4 expression tree built during the parsing of arithmetic expressions in an -.-

algorithmic language such as Algol or Pascal.

4 .= %P . -

" . '." , ;',,.,."';''' ..-.---.--- ',,"''""''.,''"W"'"-...-"....". """''::
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Edge_-_<exp>_: :=.-<edge>

Each time that an edge is recognized, a node is created to
represent it and its address saved on both the root and leaf
stacks. It will become clear why two stacks are used:

case <edge>:
/0 create-node() returns the new node's address */ ..-

node = createnode (edgenode);
push-root (node);
push.leaf (node);
break;

We shall describe algorithms using their 'C' language
representation (see, for instance [KERN\ 3]). In this language, 2 -

procedure invocation has the syntax:

procedure (paraml, param2, ....);

K: while the selection of an elemen from a data stru ture has the
syntax:

structure -> element

* Precedence_-_<exp>_:: =__<expl>_'<'_<exp3>

." Each time that a precedence construct is recognized , we are
required to set up connecting edges (representing time
precedence) between two subgraphs in the precedence graph, one
representing <exp1>, and the other representing <exp2>. As
<expl> and <exp2> were recognized themselves, their root and
leaf addresses were pushed on the root and leaf stack, so at
this point, the top elements on the root and leaf stacks are the 7

root and leaf addresses of <exp2>, and the second-from-top are
the root and leaf addresses of <expl>. We have to pop these
addresses, link <expl> to <exp2>, and push the rootand leaf
addresses of the linked subgraph representing <expl> '<' <exp2>. _-.

case <precedence>:
temp = pop...leafo;
last = popleafo;
next = pop_rooto; ' "
last -> fwd__ptr next;
next -> parent = last;
pushlueaf (temp);
break;

J40

.5.!

-?
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. Conurrency__.-_<exp>_: :=_<expl>_' '_<exp2>

--. An operator such as '9' requires more complicated code genera-
tion than, for instance, ' ' or ,e,. A 't' operator takes a
task graph subgraph as its right and left-hand operands, but ,
then these two subgraphs must be terminated by a 'vI node which
unites their two lower-most leaves. The expression tree of a

. language with conventional binary operators is a tree; that of a
task graph is a double tree. For every '" which splits flow of

e.: control into two parallel streams, there is a later, matching
'v' node which unites these two streams again. For instance, 0
the expression

(el < e2 < e6) (e3 < eT) e4 e5

will generate the following subgraph:

el "________ I

e2 e3 -1

II e4 e5
e6 e7I _...
liv

iv" "I . I

v

The essential point is that each opening par egi n node
(parallelism- -begin) must be matched by a closing Aard 'v'-
node. It follows that, as well as enstacking the addresses of
the roots of expression subgraphs as they are formed, we also
have to save the addresses of the leaf nodes of these subgraphs,
so that ve can later terminat* pairs of leaves with a 'v' node.
We therefore employ two stacks in precedence graph building, an

*.../ expression root stack and a leaf stack.

."M

.>1

, :.-
- . -4

,," . , -,, - -. , - , . - , - . -, .- .- ,,- .. . . .. -. -. . - , . .. . , .. . ..o - .. . - . - . - ,- . -.. ..- .- . - ., ..- -., ..- --. . , ., .- . ..' .. .
44* -' , . . , ,- . - . . . - - , . . , . - . . - ,- . . . - . . - . . . . . . . . • -,4 .

.4 r pr - w . ,..- . = -% . - .
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* Choice__ :=-'if' _<exp>_' then'_<stmt>_' else '_<strut>

An analogous problem is encountered in building a representation
of an

i P then S1 *Las 32;
This is solved using a similar double-stacking algorithm. In
the case of 'if' however, we have to handle three expression4' subgraphs; those for the 'if' condition, the true, and the false

exit subgraphs from the 'if'. Each of these three subgraphs is
enstacked as it is created, and then, upon recognition of

/' <choice> ::= 'if' <expression> 'then' <stmt> -
'if' <expression> 'then' <stmt> 'else' <stMt>

the subgraphs are de-stacked in reverse order (false, true, con-
dition), and attached to the 'if' node. Finally, the terminat-
Ing 'fi' node has to have the output leaves of the true and
false 'if' exit subtrees connected to it, and so these two leaf
addresses are de-stacked from the leaf stack. The code for han-
dling i and fl nodes is:

case <choice>:
node = new.-node ("if");
node -> false_exit pop_root (;
node -> true_exit = pproot (;
node -> condition = pop-root 0;

'.- (node -> true_.exit) -> parent = node;
(node -> falseexit) -> parent node;
push-root (node);
node new-node ("fi");
false = pop-leaf (;
true = pop-leaf 0;
false -> fwdptr = node;
true -> fwdptr z node;
node-> falseparent = false;
node -> trueparent = true;
push-leaf (node);

.- 'J. break;

-' °-4.-

4-,-O,

*4% %

2 >>"61
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*Iteration
The code for <iteration> is an obvious variation on that for
<choice>. The true-exit subgraph connected to the If' node has
its leaf node connected back again to the 'if' node, while the ? 0

false-exit points to the next subgraph in the precedence graph
after the while-do.

case <while>:
node = new-node ('if');
node -> false_exit = 0;
node-> true_exit = poproot (;
(node -> trueexit) -> parent = node;
node -> condition = pop_.root (;
(node -> condition) -> parent = node;

push._root (node);
true =pop-leaf 0;
true-> fwd-ptr = nod;
pushleaf (node);
break;

.- ..

%°. %"

V", .. . %

J. oP .4
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APPEDIX C

TE DESIGN OF A PROGRAIING LANGUAGE BASED a-

* '. 1 ION COWUIICATION NETiORK

Authur B. Iaooabe

~~ Richard J. Leblanc

The design and implementation of message-oriented programing languages

has recently become an active area of research. The increased activity in

this area is due, in part, to the increased interest in distributed processing

systems. Message-oriented languages structure programs as collections of

processes that communicate and cooperate using message transmission

°- primitives. Distributed processing systems can be viewed as collections of

processor nodes with independent address spaces that communicate and cooperate
by exchanging messages over communication channels. Hence, there is a natural

mapping of the units of a program written in a message-oriented language to

the resources of a distributed processing system.

This paper presents the design of a new message-oriented language,

PRONET (2cesses and htworks). The goals of PRONET are to provide a high

degree of process independence and a mechanism for describing process hierar-
chies, while obtaining information about inter-process relationships which

will aid in effective program execution. In most message-oriented languages,

relationships between processes must be expressed in the descriptions of the

individual processes. PRONET has been developed to investigate the separation

of inter-process relationships from the description of processes. This

separation is expected to enhance process independence while isolating

information which will aid in the distribution of processes. The initial

design of PRONET concentrates on inter-process relationships that describe .-

structural aspects of the communication environment used by processes. To

this end, PRONET provides powerful features for describing the instantiation

and dynamic reconfiguration of Woommunication networks.w

*This paper was published in the Proceedings of the 3rd Int. Conf. on
Distributed Computing Systems, Miami Forida, October 1982.

% %,. ':: :..;
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C. 161 .rogramng Envirnn

.. PRONET was motivated by a perceived need to aid application programmers
in their efforts to use the programming environment presented by a distributed

processing system [Fors8l]. Our view of distributed processing systems is

based on the definition presented by Enslow [Ensl78] and subsequently refined

by Enslow and Saponas [Ensl8l]. To distinguish the systems meeting the

criteria of this definition from other distributed processing systems, they

have been termed "Fully Distributed Processing Systems" (FDPS).

For the purposes of this paper, an FDPS is a collection of loosely ."del'
coupled processors that function in a cooperatively autonomous fashion to

provide services ([Ensl78], [Clar8O]). The processors are autonomous in that

their activities are entirely controlled by local decision-making criteria.

To avoid total anarchy, the decision-making criteria of each processor are
S"integrated with the goal of cooperation. This cooperation is represented

within each processor by a component of the network operating system (NOS).

The primary function of the NOS is to provide a unified view of the resources

available in an FDPS. It performs this task by imposing a layer of control

above the processors which recognizes and respects the autonomy of the

individual processors. The assumed existence of an NOS appears to distinguish

the environment we anticipate from that assumed by other researchers. For
S,' example, upon request the NOS will provide scheduling and allocation functions

based on its global view of the network. Thus, when a new process is created,

a program can use the NOS to determine an appropriate p location for NO."

the process. '"

C. 1. 2 Iai La t.n Networks "",

Programs written in message-oriented languages may be viewed as specify-

ing "communication networks". The nodes of these networks are the processes

defined or used by the program, while the arcs between nodes represent corn- .-. \

munication links. These communication links are directed and may be used in

the transmission of any number of messages. Note: this definition of "com-

munication network" concentrates on connectivity, other definitions are

-- possible--for instance the task graphs of [Live80] reflect a definition that

concentrates on communication sequencing.

Languages that support dynamic reconfiguration of communication networks 6..O

typically do so by allowing processes to create new processes and/or allowing

j.6 . -J .

, -6 . . . . . .
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4"o *. e "

processes to pass the names of processes (or ports) to other processes *,%'.:,

([KahnT7], [FeldT9], [Lisk79], [Hewi79]). Because the activities that control

dynamic reconfiguration of the communication network are intermixed with the

activities of individual processes, they are not readily available for

examination by an operating system or a person attempting to understand the

program.

Other programming languages/systems that support a similar separation

(UNIX [Bour78], Mesa [Mitc79], Task Forces [Jone79] and PCL [Less79]) do not

enforce a complete separation. In each of these languages/systems a process

may specify the creation of new processes in its description. Thus, while an

abstract view of the communication environment is available, neither the *.-
operating system nor a person reasoning about the program may rely on the com-

pleteness of this view. In PRONET, the conditions and activities associated ,..

with any structural modification of the communication environment (including

process creation) must be stated in a network specification.

C.2 M W=I ZUW DE~ MONET .*

PRONET is composed of two complementary sublanguages: a network "
specification language, NETSLA, and a process description language, ALSTEN.

Programs written in PRONET are composed of network specifications and process

descriptions. Network specifications initiate process executions and oversee

the operations of the processes they have initiated. The overseeing capacity

of network specifications is limited to the maintenance of a communication

environment for a collection of related processes. The processes initiated by

a network specification can be simple processes, in which case the activities
of the processes are described by ALSTEN programs, or they can be "composite

processes", in which case their activities are described by a "lower-level"
network specification.

ALSTEN is an extension of Pascal which enables programmers to describe

the activities of sequential processes. During their execution, processes may

perform operations that cause events to be announced in their overseeing

network specification. Network specifications, written in NETSLA, describe
the activities that are performed when an executing process 'announces' an

event. This chapter describes the mechanisms that enable processes to

>2 announce events and the network-level activities that can be performed in han-

dling an announced event. Two principles have influenced the design of these

".. % % %.-.
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features: independence of process descriptions and distributed execution of

" "" network specifications.

C. 2. 1 &hn at AL= 0
Pascal was chosen as a basis for process descriptions because of its

simplicity, its strong type checking and the availability of an extendable

compiler. ALSTEN is, for the most part, an extension of Pascal with the

exception of the 'file' interface provided by Pascal. Process descriptions

written in ALSTEN communicate with their surrounding environment primarily

* through locally declared ports which are visible to their overseeing network I

specification. Hence, the Pascal 'file' interface has been replaced by port

declarations and message transmission operations in ALSTEN.

This section describes the ALSTEN features associated with messages

transmission and process-defined events. Each message transmission initiated

by a process causes an event to be announced in the network specification

which oversees the operations of the process. In handling this event, the

overseeing network specification determines where the message is to be

delivered and how the couaunication environment being maintained is to be

*.-,., altered as a result of transmitting the message. While this provides a power-

ful mechanism for dynamic reconfiguration of logical communication networks

and maintains a high degree of independence in process descriptions, a more

flexible mechanism of transmitting information from an executing process to

its overseeing network specification is often useful. In ALSTEN, this

mechanism is provided by event declarations and an 'announce' operation.

C.2.11 Message Transmission Operations
Message transmission is the primary mechanism by which executing proces- .i

ses comunicate with their other objects in their environment (their over-

seeing network specification and processes). The basic message transmission

operations of ALSTEN are 'send' and 'receive'. Both operations are specified

win-line", as are the 'read' and 'write' operations of Pascal (and in contrast

to the 'interrupt handling' receive of Mininet [LiveBO]).

The send operation of ALSTEN is best classified as a 'buffering' opera-

tion with partial 'blocking'. When a process executes a send operation, its

(logical) execution is blocked until all events caused by the message trans-

P4 mission are handled. Handling a message transmisson event may involve an

alteration of the logical network which oversees the execution of the process

. "r,, ..,-%'.,]
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sending the message and delivery of the message to any number of 'receiving'

processes. Message 'delivery' does not require that the 'receiving' process

perform a receive operation, but does block execution of the sending process

until the message value has been copied into the 'IPC space' of the

'receiving' process. The address space of all ALSTEN processes is partitioned

into an 'IPC space' and a 'manipulation space'. The 'IPC space' consists of

queues of messages which have been delivered to the process but have not been

'received'. The 'manipulation space' of a process contains the values of

variables which are local to the process.

To receive a message, a process must wait until an acceptable message is

available in its 'IPC space'. When it has been completed, the receive opera-

tion of ALSTEN has the effect of transferring the message received from the

'IPC space' of the receiving process to its 'manipulation space'.

Executions of the send and receive operations of ALSTEN are specified by

send and receive statements. The syntax of these statements is shown in

Figure 1. These statements are introduced into the grammar of Pascal [Jens71J

as new variations of the 'simple statement'.

<send stmt> ::=
send [<expr>] 12 <bound port denoter>

<receive strut> ::= <simple receive> I <conditional receive>
<simple receive> ::= . ,

receive [<variable>] t= <free port denoter>
<conditional receive> ::=

xWn (<receive part>) [<otherwise part>] ndzad,
<receive part> ::= <simple receive> Edo <strt>]
<otherwise part> ::= otherime <stmt>

F71u. 1. Send and Reaeive Statements in ALSTU-

The 'send strut' causes the value of the expression to be transmitted

through the output port identified by the 'bound port denoter'. The 'simple

receive' causes the 'variable' to be assigned the value of the next message to

be received from the port identified by the 'free port denoter'. If any of

the simple receives in a 'conditional receive' can succeed immediately, one is

chosen arbitrarily and the statement following the corresponding A is

executed. Otherwise, when there is no 'otherwise part', the execution of the

process is blocked until one of the receive statements can succeed. If none

of the receive statements succeed Immediately and there is an 'otherwise

part', the statement following the otherwise is executed. This control struc-

ture presents a restricted form of the Ada alect [DoDBO]. .

".'."=,-" # -" ," ",,''~~~. . ..'','"i',-",,' .. ,W '," '. ", w "%--.-----...... . . . ... .
............................................................................................................................................
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C.21.2 Ports for Message Transmission

To emphasize independence of process descriptions, message transmission

operations are issued to locally declared 'ports'. The ports of a process

description are visible to network specifications that create instances of

processes which execute the process description. Simple ports are declared

* ".o with a direction ('in' or 'out') and an associated message type. The "'

associated message type defines how messages transmitted through a port are to -

be interpreted. A message type can be a 'signal' (only control information is

transmitted) or any data type which does not contain pointer or file corn-

ponents.

The notion of 'server' processes has had a significant impact on the

design of the message transmission features of PRONET. Server processes are

characterized by two properties: first, a server process must respond to

requests from an unknown number of 'user' processes and, second, it must

ensure that each response is directed toward the process that generated the

corresponding request. When using server processes and user processes in

different programs, it may be necessary to impose 'intermediary' processes on

one or more of the communication paths between a server and a user. An

intermediary may mediate between differlng message formats or communication
:.-V.

protocols.

The ALSTEN features related to the description of server processes are

'port groups', 'port sets' and 'port tags'. Port groups provide a means-for

collecting a number of simple ports into a single bundle. A 'bidirectional

port' would be a port group containing two simple ports, one input and one

output, each with an associated message type. Port sets, on the other hand,

are used to denote collections of identical ports-either simple ports or port

groups. Port sets provide server processes with a mechanism for communicating

with an unknown number of user processes. Each element in a port set is

assumed to be associated with a unique user--if the port set is a collection

of port groups, the simple ports in each port group may be connected directly % ."

. to the user or to intermediaries. In order that a server may restrict its

communications to a particular user, we introduce port tag variables. Port

tag variables are declared to range over the members of a single port set.
The value of a port tag variable can be set in a receive statement and may be

used in subsequent send and receive statements.

I.- .....
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The syntax for declaring ports and port tag variables in ALSTEN is shown

in Figure 2. Port declarations appear in the header of a process description

and hence, the definition of any 'msg type' must appear outside of the process ; O

description (unless it is a standard type; e.g., integer, real, signal, etc.).

This is necessary as these definitions must be shared by other processes (that

either send or receive messages of type 'msg type') and any network specifica-

tion that oversees the operations of processes executing the process descrip-

tion. The nonterminal <port tag type> is introduced as a new 'type' in the

syntax presented in [Jens74].

<port decl> ::= <simple port decl> I <port group deal>
<simple port deal> ::= '

=1 seAt] <port id> <direction> <msg type>
-% <port id> ::= <id>
;~<~ direction> :'=.±i I

<msg type> ::= <type id>
<port group decl> ::=

2rt [ae] <port id> '(' <subport list> ')'
<subport list> ::= <subport deal> {';' <subport deal>)
<subport decl> ::= <subport id> <direction> <msg type>
<subport id> ::= <id>
<port tag type> ::= .gof <port id>
Figure 2. Port and Port Tag Declarations in ALSTEN

Figure 3 presents the ALSTEN syntax for denoting port instances in send

and receive (and announce) operations. A 'bound port denoter' whose 'simple

port denoter' identifies a 'port set' must contain a 'use tag part' to

identify the specific instance of the port set being denoted. Recalling the . -

syntax of the send operation presented in Figure 1, the message type of the

port denoted in a send operation must be "name equivalence" compatible with

the type of the expression being transmitted (if the message type is 'signal'

no expression can be present). A similar restriction holds for receive

operations.

<bound port denoter> ::= <simple port denoter>
.4 ' <simple port denoter> <use tag part>

<simple port denoter> ::= <port id>
I <port id> '•, <subport id>

<use tag part> ::U uMe <port tag variable>
<port tag variable> ::= <variable>
<free port denoter> ::= <bound port denoter> ".-

I <simple port denoter> <set tag part> ..'.
<set tag part> ::m Aet <port tag variable>

Figure 3. Denoting Ports In ALSTUN
,-:....

• .4 -.--.- --.-. ".--'-.. "-
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The use of port sets, port groups and port tag variables is illustrated

in Figure 4 which presents the description of a simple server process. This

process implements a shared sequence of numbers. In line 2 a port set,

'user', is declared. The elements of this port set are instances of a port

group containing an input port 'req' and an output port 'rsp'. Lines 10 and

11 illustrate the setting and subsequent use of the port tag variable

'user__tag' (declared on line 4). In line 10, the value of 'usertag' is set
to indicate which instance of the port set 'user' the request is

received from. The value of 'user.tag' is und in line 11 to direct the

response to the element in the set 'user' from which the request was received.

1 2rooes script shared_sequence
2 D= At user (req iJ signal; rsp out integer);3 va.
4usertag : In al user;
5 sequence_val : integer;
6 ben-
7 sequenceval .- 0;
8 w.le true o.
9 ,-..n

10 receive frm user. req Aet usertag;
11 And sequence_val IQ user.rsp use user-tag;
12 sequenceval : sequene_val . 1
13 S= (0 While 0)

. 1ii Ad (6 shared sequence e)

Figure 4. A Simple Server Process

C.2.1.3 Prooese-Defined Events

As has been discussed, the execution of a send operation causes a mes-

sage transmission event to be announced in the network specification which-. ... -"::

oversees the operation of the process which executes the send operation.

Thus, the transmission of a message may lead to a reconfiguration of the com-

munication environment used by the sending process. This is particularly

useful in providing a mechanism for dynamic reoonfiguration of logical com-

munication networks while maintaining a high degree of independence in process

descriptions. However, a more flexible interface between processes and their

. overseeing network specifications which allows processes to indicate

.. " significant changes in their state or possible errors in communications is ..

often useful. In ALSTEN, this interface is provided by event declarations and

the Agnann statement.

Process descriptions may declare event names and subsequently lannouncet
., ~*....-.
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these events during their execution. The activities to be performed (if any)

when an executing process announces an event are described in the network

specification which oversees the execution of the process. Hence, this [. 0

4.. mechanism provides a flexible interface between the process-level and the

network-level while maintaining the separation of these levels.

Event declarations have the form:

<event del> ::=

event <event name> rabout <port id>]

Event declarations appear in the header of a process description and follow

the port declarations of the Process description. The event name is an
identifier which can be used in subsequent annett operations. The optional .+

'about part' allows the process to associate an event with a set of ports.

This is useful in Indicating erroneous ooumunication (either protocol or

consistency) on a specific port.

The announce operation of ALSTEN is introduced as a statement (a 'simple

statement' in the grammar of Pascal [JensT4]):

<announce stot> : := A <event name>
[abut <bound port denoter)]

The 'event name' must be the name of a declared event. Further, if this event

has been declared with an associated port set, the about clause must be

present and must denote an instance of the associated port set.

An example of process-defined events is presented in Figures 5 and 6.

Figure 6 presents the script for instances of 'mailbox' processes. The types I'

used in the mailbox process script are shown in Figure 5. In this case, the

event 'mailbox.epty'-deolared in line 5 of Figure 6 and announced in line
2-is used to indicate a significant change in the internal state of the

process.

~~1 ,.-'m'

2 letter = Arm [1..120] at char;
3 userjsp_Unds x (empty, mal..item);
4 user.rep = zmod
5 ase kind : user-rspjinds o.
6 empty : (;
7 ail_item : (let : letter)
8 iM; (a user-rap *)
Figure 5. Mailbox Prooess Soript Type DeflnitionA

1 .NO %.'%
.%. .
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1 prosa = mailbox -.
2 D input In letter;
3 2= output - letter;
4 2= control ±n signal;
5 event mailboxempty;

7 next_rsp : user-rsp; -

8 done boolean;9 kfig >='
10 na11 receive fm control;

12 nextrsp.kind := mailitem;
13 done := false;
14I reveat .,. :

15 M
16 eeive nextrsp.let Jf=m input ko
17 sMd nextpsp IQ output;
18 otherwise
19 done := true
20 end (' when 4)
21 uM=U done
22 next__psp.kind := empty
23 send nextjsp t output; .,--
21 announ mailbozempty . .

25 u= false
26 A= (0 mailbox script 9)
Figure 6. The Mallbox Prooess Script

This process script implements a simple mailbox which acts as a
repository for 'letters'. Responses from the mailbox will be of type ".

Iuser_'sp' which is defined in lines 3-8 of Figure 5. Upon reception of a

signal on its 'control' port (line 11 of Figure 6), the mailbox forwards the
letters on its 'input' port to its 'output' port (lines 16 and 17). When there -"

are no letters remaining on the mailbox input port, the process sends an
'empty' message to its output port and announces the event 'mailbox-empty'
(lines 22-21). The process then cycles to wait for the next request to
deliver its 'oontents' (line 11).

The structure of this mailbox is natural considering the semantics of ....

the ALSTU send operation. Because senders do n9t wait until their messages "'.4

are received, there is no need for the mailbox to receive messages as they are
sent. Hence, the mailbox does not maintain an internal representation of its,4., contents but rather, relies on the run-time support environment to maintain

collections of letters. A simple mail system that uses this mailbox process
script and illustrates the handling of prooess-defined events will be
presented in the next section. 'NJ0

N --.
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C. 2.2 M -ZMUM -f -ZL

The features of NETSLA are aimed at specifying the initial configuration

and subsequent modifications of a comunication environment. The overriding

principle followed in the design of these features is that of "centralized

expression-decentralized execution" [Live80 ]. Centralized expression is

important in presenting the abstraction to be supported by network

specifications. All of the inter-process relationships that describe a con- .

munication environment appear in a single network specification. However, ° ".

this co-munication environment is not maintained in a centralized fashion.

Processes maintain their communication environment indirectly. When they

execute send or announce operations, processes perform the activities

specified by their overseeing network specifications; however, the nature of

these activities are unknown to the process. -.

C.2.2.1 An Overew of Netwk Specifications

The syntax for specifying a network is shown in Figure 7. Like the

header of an ALSTEN process script, a network header can contain port and

event declarations. Network specifications that do declare ports and/or

events will be used as *composite processes" in higher-level network

specifications. --

<network specification> ::- <network header> .-
(<process class specification>)
(<event handling clause>)
[<initialization clause>] -

mnd <identifier>
<network header> ::= network <net id> ?;'

{<port decl>) (<event del>)
<process class specification> ::u .9'.. .',..

nar W= <process id>
[<process attributes>]
(<port del>)
(<event decl>)

eA <process id> 4.. %.

<process attributes> ::: . ttribu.es
<field list> end Attriute

F1gue 7. Network Speoltieattona In NTILA

The process class specifications contained in a network specification

capture those portions of a process description that are visible in a network

specification--its name, port declarations and event declarations--and a

'process attributes' part. The name, port declarations and event declarations

stated in process class specification are a reiteration of the process script
'-'.

.4-44.~~ -- 4
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or network specification header which is used to implement instances of the

process class. Process attributes are used to identify the characteristics .-. .

associated with instances (processes) in a process class. The implementation

NV, of a process class may be a network specification (in which case instances of

the process class are actually "composite processes") or a process script

%**'%.* written in ALSTEN. In either case, this implementation is not contained in

the network specification. Process implementations are compiled separately

and compatibility between specification and implementation is checked in a

I..." pre-linkage phase. The remaining portions of a network specification, the
event handling clauses and the optional initialization clause, describe the

instantiation and subsequent modifications of the logical communication

network which is maintained by the network specification.

When a logical network is instantiated, its initialization clause is
elaborated. This initialization clause is used to create a collection of

processes and delineate communication paths between them. A simple network

specification is illustrated in Figure 8. One process class, 'procclass'

*.. (lines 2-5), is used in this network specification. Instantiation of the .'.

- logical communication network is speoified in lines 6-14 and involves the

creation of three processes (lines 7-9) and the establishment of communication
-- paths betven them (lines 10-13). The statement 'connect procl.output &g

" proc3.input' (line 10) specifies that the messages sent to the output port of
- tproclt are to be transmitted to the input port of 'proc3'. A graphical

representation of the logical communication network established by this
network specification is shown in Figure 9.

1 network static_net

2 D class proc~olass
3 D= input in integer;
4om= output = integer;
5 e.nd proc_class"....6 .±n±" ... '--

... 7 Create procl : procloclass;
8 create proc2 : procllass;
9 create proc3 : procl_class;
10 Conneot procl.output I& proc3.input;
11 a proo2.output t2 proc3.input;
12 Conneet proo3,output ±& procl.input;

-"-" 13 co eet proc3,output I& proc2.input;
14 nAd stati _net

.1 Figure 8. A Simple Network Speoifioation

.,.. %,- 
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proc I I proc2

input I I I output input I I I output

4.I - .. I I I '.'

\/ I ____ _______

I??
output-__L I..nput

, 4 I proc3 I

Figure 9. Graphical Representation of the Simple Network "-

This simple example illustrates two of the simple activities that can be
performed in a network specification, creation and connection. As

illustrated, creation involves the binding of a name to each process instance.• .- --- °

as it is created. In NETSLA these and other name bindings are limited to the

clause in which they appear. Hence, the names tproel', 'proc2l and 'proc3'

may be used throughout the initialization clause but would not be usable in

other clauses unless they were explicitly bound to objects (process or port

instances) in these clauses. Connection is shown in lines 10-13. One-to-one,

many-to-one (messages are ordered by time of arrival) and one-to-many (mes-

sages are replicated) connections between ports can be specified. To be con-

nected, ports must be compatible in both message type and direction. Message

type compatibility, like type compatibility in PASCAL, is based on named

equivalence of types. The definition of port direction compatibility has two

components: ".

i) If one port is a network-level port (declared in the network header) and

the other is a process-level port (declared in a process class .""

specification), the ports must have similar directions.

ii) If both ports are process-level ports or both are network-level ports,

the ports must have opposite directions. ,'

C.2.2.2 Event andling

The initialization clause is sufficient for the description of static

networks. However, other features are needed to describe dynamically changing A

communication environments. In PRONET, these features are based on the notion

of network events. During their execution, processes may perform operations

4. % which announce events to their overseeing network specification (using send or

A=u ). NETSLA provides two mechanisms for handling announced events in

*4I el'a* % .. S . . . .. . . . . . . . - - a. . .
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network specifications: connections and 'event handling clauses'.

Connections are one mechanism for handling the event associated with

message transmission on a port. When a connection between two ports has been

established, this 'message transmission' event is handled by transferring the

-. message from the sending port to the receiving port. The connection mechanism

is distinct from the event clause mechanism in three ways: connections can be

established or broken dynamically, the activities of this mechanism are .

defined by the language and connections can only be used to handle the 'mes-

sage transmission' event.

Event handling clauses are more flexible in the types of events they can

handle and the activities they can specify but are established statically and

cannot be 'broken'. Event handling clauses provide a capability to specify

the activities that are to be performed when a message is transmitted (if a

simple connection is not sufficient), when a process defined event is

announced, when an element of a network declared port set is created or when

.*... an element of a network declared port set is removed. The syntax of the event ..

handling clauses of NETSLA is illustrated in Figure 10.

<event handling clause> ::= <arrive clause>
' <enter clause> I <leave clause> I <when clause>

<arrive clause> ::= <arrive clause header>
<activity list> And arriv

<arrive clause header> ::= .Arrn [<id>] on"
<arrive port binding> [froM <processs binding>] ''

<arrive port binding> ::= [<subport id> gf] <port binding>
<process binding> ::= [<id> ':'] <process class name>

*..'. <port binding> := [<id> ':'] <port set name>
<enter clause> ::= <enter clause header>

<activity list> A enter
<enter clause header> ::= entr <port binding> do4._."
<leave clause> ::= <leave clause header>

<activity list> end leave
<leave clause header> ::= leave <port binding> d2
<when clause> : := <when clause header>

. <activity list> Swhen
<when clause header> ::= wheM <event name>

"ianund bI <process binding> Q
<initialization clause> ::= AaLtJU2 <activity list>

Figure 10. NETSLA Event Handling and Initialization Clauses

The bindings in the various event clause headers are used to bind names 4'-.-,

to the objects (message, process instance or port instance) involved in the

event being handled. For example, Xhn clauses are used to handle the
010..

""4 .

., 'a'.
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announcement of process-defined events. As such, the following 'when clause

header' could be used in a network specification to handle the 'mailboxempty' .o.:*..

event when this event is announced by a process executing the mailbox process
script shown in Figure 6.

whnh mailboxlempty anounce .ki box : mailbox do

In this case, the event being handled is the process-defined event
'mailbo-empty' and the name 'box' is bound to the instance of the mailbox

process that announced the event. When clauses are also used to handle the

standard event 'done'. Whenever an executing process terminates its

activities, the standard event 'done' is announced to its overseeing network

specification. ""'"-'

Arrive clauses are used to handle message transfer events when simple
connections between ports are not sufficient. An arrive clause can be
associated with the arrival of a message on a network-level 'in' port, in
which case the optional 'from process binding' is not specified. An 'arrive ".
clause' can also be associated with the arrival of a message on an 'out' port

of a process instance, in which case the 'from process binding' identifies the
process class of interest and can be used to bind a name to the instance which
is transmitting the message. The first identifier in an 'arrive clause -

header' is used to bind a name to the message value being transmitted. The

'arrive port binding' in an 'arrive clause header* identifies the port set,
binds a name to the port group instance through which the message is transmit-

ted and identifies the subport being used.

When an event is announced, two possibilities exist: no 'handlers' .
(connections or event handling clauses) are associated with the event or at

least one 'handler' is associated with the event. In the latter situation,

the activities specified by each handler are performed on the event (in an .
arbitrary order). For example, when multiple connections are established for
a port, any message transmitted through the port is replicated and delivered

along each of its connections. When no handlers are associated with an event,
NI

its announcement has no effect on the communication environment being

maintained by the network specification. Moreover, the object (process or

overseeing network specification) that announced the event cannot determine if " ".*

the event was handled. For example, when a process sends a message to a port -. '

that has no established connection or arrive clause, the message is removed
4 . , ' a %
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from the port and the sending process cannot determine that its message has
' . not been delivered. --.'.

C.2.2.3 Simple Activities

<activity list> ::= <activity> {';' <activity>'
<activity> ::= <simple activity> I <structured activity>
<simple activity> ::= <creation> I <termination> +-,'..-..

I <removal> I <connection> I <disconnection>
I <message transmission> I <value construction>
I <event announcement> I <attribute assignment>

<creation> ::= areate <process binding>
,,Icreate <port binding> on <process instance>

<termination> ::= terminate terminate <process instance> /..-.
<removal> ::= e <process instance>

I remove <port group instance>
<connection> ::= connect <port instance> 1t <port instance>

• <disconnection> ::= d <port instance> - ,
I s <port instance> from <port instance> %"*

* <message transmission> ::-
Asn <msg value> IQ <port instance>

<value construction> ::: cs t <id> ':' <type name>
va ' <component assignment list> ']'

"*-." <attribute assignment> ::= <attribute denoter> ':=' <value>
<event announcement> : := janu <event name>

,about <port group instance>]
Figure 11. Simple Activities in NETSLA

NETSLA provides nine basic activities which can be used in initializa-

tion and event handling clauses: creation, termination, removal, connection,
*4 ~ disconnection, message transmission, attribute assignment, event announcement

and value construction. The syntax used in specifying these activities in

* -NETSLA is shown in Figure 11.
.*'5 .5...-* * .

The creation activity can be applied to a process class or a port set of

a process instance. In the first of these variations, a new instance of the

process class executing the process script or network specification associated

with the process class is instantiated. The 'process binding' part of the

creation activity is used to identify the process class and bind a name to the

newly created instance. This form of the creation activity was illustrated in

the network specification illustrated in Figure 8. The second variation of

this activity creates a new port group instance in a port set on a process

"- instance. The 'port binding' part of this variation is used to identify the

port set and bind a name to the newly created port group instance. For exam-

ple, a network specification containing the process class specification:

V..

..-,-... . ..., , ,.. .-....45~.. .. ......... .... . + + ,* . . . . . .,-. . ,. .,,,... ... ..... *N . ._ \ ... .
-,. ,,r,, . -' .' ." . ...- .-.- S. * , , .' _. - . . . "." ".- " . .. . . . .- -. 4 "- . . , -" ".'-* ' .-.. ' .." ".-.'

"- %,.



. *S*.,,.. -

Appendix C PRONET Page 59 .

process class sharedsequence
2= set user (req in signal; rap out integer);

&ad sharedsequence -

could contain the activities:

create server : sharedsequence;
create user__portl : user o= server;

(Recall the 'sharecsequence' script of Figure 4.) The latter of these .

activities creates an element of the port set 'user' on the process instance

identified by 'server'. This newly created element is bound to the name

'user...portl'

The termination activity can be applied to a process instance or to the

entire logical network being maintained by a network specification. When this

activity is applied to a process instance, the activities of the process are

terminated and no further messages or events will be transmitted to or

received from the terminated process. When no process instance is specified

in a termination activity, the logical network maintained by the network

specification is terminated. This involves the termination of all process

instances executing in the logical network.

The removal activity of NETSLA can be applied to a process instance or -'

to a port group instance on a process instance. In the latter variation, no

-.5,. future messages will be transmitted through the port instance which has been

removed. Attempts to transmit messages through a removed port will have no

effect. When the removal activity is applied to a process instance, the .-

process which has been removed may continue to execute and may generate future

messages; however, no future messages will be transmitted to the identified

process. (In effect, all 'in' ports on the process instance are removed.)

This somewhat unusual definition of 'removal' derives from two considerations:

process execution and the ALSTEN send operation. Because messages are %
buffered using the ALSTEN send operation, processes may have meaningful work

to complete before their activity is terminated. Further, processes have an

inherent termination built into their descriptions.

The connection activity involves two port instances and once performed

ensures that all messages transmitted through the first port instance will be
transmitted through the second until this connection is broken by a subsequent

disconnection activity. This activity was illustrated in the simple network -'

. 5 . . .. .5 5

o , , , , o ° . • .- • • . . *** *S . - . . o , . . . . . . . .- '"
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specification shown in Figure 8.

The disconnection activity applies to ports and has two variations. In

the first, two (presumably connected) port instances are identified. This .

variation breaks a previously established connection between the identified

ports. In the second variation, only one port instance is identified. This

variation breaks all previously established connections involving the

identified port. Once a connection between two port instances has been 0
broken, future messages transmitted through the first port will no longer see

the connection and hence, will not automatically be transmitted through the

second port.

Message transmission involves the transmission of a message value"" ".

through a port instance and has the same semantics as the send operation of -
ALSTEN. .' ..

NETSLA does not provide general variable declaration or assignment

mechanisms as does Pascal (and ALSTEN). Instead, NETSLA is based on a dynamic

binding of identifiers to values in event clause headers, creation activities -

or structured activities (discussed in the next section). For example, the

value of the message being transmitted can be bound to an identifier in an
'arrive clause header'. While this is sufficient for most purposes,

occasionally there arises a need to construct values of (Pascal) structured .

types. The value construction activity of NETSLA has been introduced to fill -

this need. Value construction involves the assignment of values to the com-

ponents of a structured type (the type of the value being constructed is given

by 'type name') and the binding of an identifier to the value constructed.

The identifier can then be used in later activities to refer to the value .
constructed.._,.

Periodically, the attributes of a process instance will need to be up-

dated to 'reflect changes in the characteristics of the process instance. The

attribute assignment activity is provided to enable the updating of the

attributes of a process instance. An attribute of a process instance is

denoted by a conjunction of a 'process instance' and an attribute name. The

type 'value' assigned to an attribute of a process instance must be compatible

with the type of the attribute.

Like process descriptions, network specifications that act as "composite

proosses" may need to announce events to their overseeing network specifica-

.. * .*..-*.-'.-.. '_i: I
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tion while they are active. This capability is provided by the event

announcement activity.

C.2.2. Structured Activities

NETSLA provides structured activities for alternation, iteration and

location. The syntax for the alternation activity is presented in Figure 12.

This activity is derived from the _Q&= statement of Pascal and provides a

mechanism for specifying alternative lists of activities to be performed on

the basis of an available value.

<structured activity> :: (alternation> I <iteration>
<location>

<alternation> : : gase <value> of A

(<case list element>) [<otherwise part>] I=n case"
<case list element> ::=

<case label list> ':' '(' <activity list> ')'
<otherwise part> ::= otherwise <activity list>

Figure 12. Alternation in X LA

The syntax of the location and iteration activities is presented in
°,."Figure 13. These activities provide a mechanism for selecting process and

port instances in the logical network maintained by a network specification.

Both activities are based on a 'selection binding' which specifies the

criteria to be used in selecting groups of object (port and process)

instances. The 'selection binding' is also used to bind names to the objects

selected.

The iteration activity is a looping construct. The activity list

specified in the iteration activity is performed for each group of objects

that meet the criteria of the 'selection binding'. In each iteration of the

activity list, a new group of object instances is selected and bound to the

names specified in the 'selection binding'. The location activity is a simple

conditional construct. The activity list specified in the location activity

will be performed at most one time for one group of objects that meet the

criteria of the 'selection binding'. In the case of location, if multiple *,- =

- groups of object instances meet the criteria, one of these groups is selected

arbitrarily and the object instances in this group are bound to the specified

names. In the case of iteration, the activity list specified will be applied

to all groups, but the order of application is arbitrary. If no group of

object instances meets the criteria of the 'selection binding', in either

iteration or location, the activity list specified in the optional 'else part'

1% . *

N4 N' 4
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~<iteration> :=<iteration header> <activity list>
S[<else part>] enld rA=e 1.0

<iteration header> •--- r.M <selection binding> do

. S. * S. =

<location> ::= <ocation header> <activity list> .
[<else part>] &nd Lind

<location header> ::: find <selection binding> 4o I
<else part> ::= els <activity list>
<selection binding> ::= <simple selection binding>

,<nested selection binding>
<simple selection binding>::

<port binding> [<where clause>]
<process binding> [<where clause>] I

<nested selection binding> ::=<port binding> on..
<process binding> [<where clause>]

<where clause> ::= where <criteria>
<criteria> ::= <criteria factor>

I <criteria> 9Z <criteria factor>
<criteria factor> ::= <criteria primary>

I <criteria factor> and <criteria primary>
<criteria primary> ::: not <criteria primary>

I <connectivity criteria> I <attribute criteria>
<connectivity criteria> ::= c <port instance>

V [12 <port instance>]
A <attribute criteria> e p<l

<attribute denoter> <el op> <value>
Figure 13. Iteration and Location in NNTSLA

The 'selection binding' can be a 'simple selection binding' or a 'nested

selection binding'. A 'simple selection binding' is used to select a single ..-
:.V

object instance (one for each iteration in the case of the iteration .- .

activity), while a 'nested selection binding' identifies a process instance

and a port instance on the identified process.

The port and process bindings in the simple and nested selection bin-

dings identify the process class and/or port set of interest. The optional

'where clause' is used to impose additional selection criteria based on con-

nectivity or attribute values.

C.2.2.5 A Simple Mail System

This section presents the design of a simple mail system to illustrate

the basic features of NETSLA. The mail system provides services that allow

users to create numbered mail boxes, read the mail in a numbered mailbox and - -

send letters to a numbered mailbox. The type definitions needed in the design

of the simple mail system are presented in Figure 1I4.

,.... -. V.
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2 letter = Arm .. 120] of char;
3 userreqcinda = (.akeqbox, read.jmail, sendjnail);
4l userrjeq = d
5 number : integer;
6 AM kind : user__peq_kinds f.-
7 make-box, rea4dmail : );
8 send.jail : (let : letter);
9 And;
10 user_.rspjcinds = (empty, mail_.tem);
11 user_rap = reord
12 case kind : user-rappkinds at.
13 empty : 0; ,:
14 mail-item : (let : letter);
15 And;
Figure 111* Simple Mall Systems Type Definitions

An external view of the mail system is illustrated in Figure 15 and is

characterized by a set of ports, each of which has a request subport, freq',

and response subport, 'rsp'*. The internal organization of the mail system is

hidden, only the ports defined by the mail system are visible. In particular,

users of the mail system are unable to discern whether the mail system is

-!N organized as a simple process or as a network of communicating processes.

user user user
.4 rap req rsp req rsp req

~/\

, -. I ..I, .

I I
~/

Figure 15. Graphioal Repr*senatation of the Simple Mail System
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1 network simplemail;
2 2= At user

(req iA userpeq, rap out user_.ysp);
3 process cglams mailbox

5 number :integer
6 ag attributes
7 or~t input In letter;

" 8 2 output out user_rsp
9 2=± control Un signal;
10 ezent mailboxempty;
11 man mailbox -

12 Arriv mag : user_eq Mn req o u : user .--
13 i. msg.kind at
1I make_box:
15 (LJnd box : mailbox where

box. number = msg. number A2g
16 aa
17 Zn2ate new-box : mailbox;
18 newbox. number : =mag. number

- 19 An=fnd

20 readmail
21 (find box : mailbox where

box.number = mag.number Ao I
22 onnect box.output f& u.rsp;
23 Aana IQ box. control

25 a rap : userrsp [kind :f empty];
26 Anwd rap t u.rsp
27 gjd Lind)
28 send_ail :
29 (fZn= box : mailbox where

box. number a mag. number A2
30 .Ad mag. let t box.input
31 endfn4)
32 And ariv

33 xhen mailboXiempty Aummund ka
box : mailbox A

34 box.output
35 And A=~
36 nd simple-mail

Figure 16, Network Speoifioation for the Simple Mail System

A network specification which implements the simple mail system is shown

in Figure 16. To match the external specification illustrated in Figure 15,

this network defines a port set 'user' (line 2). The dynamic behavior of the

mail system is specified in the arrive (lines 12-32) and hen (lines 33-36)

clauses. Now mailboxes are created as requested when there are no mailboxes

with the specified number (lines 15-19). Reading the contents of a numbered

.~~~~~ ' " % ,%
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mailbox involves locating a mailbox instance with the correct 'number'

.N attribute. If an acceptable mailbox instance is found, its output port is

connected to the 'rap' subport of the user port that generated the request and

a signal is delivered to the 'control' port of the mailbox instance (lines 21-

33). This connection is broken when the mailbox instance announces the event

'mailbox-empty' (lines 33-35). If no mailbox instance can be found, an empty i-li
response is constructed and transmitted to the response subport of the user

port that generated the request (lines 25 and 26).

C.2.2.6 Event Cla.se Execution''.

To achieve decentralized execution of network specifications, the

activities specified in an event handling clause will be performed--

"_. indirectly--by any process that announces the event handled by the clause.

'-A For example, any process that sends a message to the simple mail system shown

in Figure 16 would perform the activities specified in the arrive clause

(lines 12-32) of the network specification.

The activities specified in an event handling clause are best viewed as

specifying searches and modifications of a partitioned and distributed

representation of a logical communication network. This representation

a- contains representations of all object (port and process) instances in the

logical network as well as representations of the current connections between

port instances in the logical network. Executions of all event handling

clauses are required to be serializable.

The language features presented reflect a concentration on inter-process

relationships that describe program structure. Recall that our goals were to

provide features which would support independence of processes and the
description of process hierarchies, while obtaining information which would

aid in the effective execution of programs. The network specifications of

PRONET are, in general, more useful in support of the first goal than of the
'
.
. second. As PRONET has developed and the features in NETSLA have come to

provide more power for describing dynamic reconfigurations, the network

specifications have come to provide less useful information to an NOS. For .' -.'.

programs which can be described by a static network, however, the features of
V'A PRONET effectively support both goals. a-

4
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4~~

FRONET also includes features which provide a programmer with the il
ability to handle network failures. Programming for robustness in the race of
such failures requires a considerable alteration of programming style, but it

can be done within the framework provided by PRONET. Further discussion of

-. these features can be found in EMaeo82J.
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APPENDIX D

FAILURE HANDLINa IN P1 '.T

Riohard J. LeBlano
Arthur B. Macoabe " e

D.1 .INTRODUCTIN

New features aiding , design and description of distributed programs

are central to the design of PRONET [Hacc82, LeBl82]. These new capabilities

are being implemented as extensions to Pascal, but since they involve only

interprocess communication and interconnection of processes via message chan-

nels, they could be added to many other languages.

Among the important features of PRONET are the abstraction capabilities

it provides for the specification of programs as logical networks of proces-

ses. Network specification and process description are separated in PRONET by
the division of the language facilities into two sublanguages: NETSLA

(Network Specification Language) and ALSTEN (an extension of Pascal for

process description). These capabilities allow an encapsulated description of

the connections between processes, aiding in the understanding of complex

programs and providing information a distributed operating system needs for "\.

making placement and scheduling decisions.

Other programming languages/systems that support a similar separation

(UNIX (Bour78], Mesa [Mitc79], Task Forces [Jone79] and PCL [Less79]) do not

. .~* enforce a complete separation. In each of these languages/systems a process

may specify the creation of new processes in its description. Thus, while an

3 abstract view of the communication environment is available, neither the

operating system nor a person reasoning about the program may rely on the com-

pleteness of this view. In PRONET, the conditions and activities associated

=* with any structural modification of a communication environment (including

process creation) must be stated in a network specification.

A network specification describes the initial configuration of a

distributed program, in terms of processes to be created and the communication

connections among them, and it describes the evolution of the network of

processes in response to eyMent, The event handling capabilities of network
" * -. '.-
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specifications are the key to providing for a centralized expression of

processes interactions. Message transmissions are events which may be handled

in a specification; a processes may also explicitly announce an event in order

to suggest action by an event handler in its overseeing network specification.

Network specifications rely on a distributed data management system to

maintain information about resource availability and, hence, the activities

expressed in a network specification can be performed in a decentralized _-

fashion. The distributed data manager enforces serialization of the execution

of event handlers, so network specifications need not be implemented as

processes. Thus an event handler can be executed as part of the process which

caused its invocation and the overall structure of a distributed program can

be thought of as a tree of specifications and procesbes, with processes only

appearing at the leaves. As a result of this structure, there is no single

critical point whose failure can halt the operation of an entire program.

The failure handling features of PRONET are intended to provide a

capacity for continued execution in the presence of mechanical failures and

the possibility of recovering portions of a program that may have been affec-

ted by such a failure. An additional goal was that the failure handling

features should only impact execution costs to the extent that they are used

in a program. In order to accomplish these objectives, PRONET uses the

concepts of permanent processes and stable storage. The features available

support buffered communication (rather than remote procedure call) in an

unreliable environment and make it possible for a programmer to ensure that

the external behavior of a process is consistent with its internal state, even

in the presence of failures.

D.2 DEFINITION ja ZAIL=
The following definitions of failure, error and fault are presented by

Randell, Lee and Treleaven [Rand78]: ,

"When the behavior [of a system] deviates from that which is
specified for it, this is called a failure. A failure is thus an -.

event... We term an internal state of a system an ta te,,..te
when there exist circumstances (within the specification of the
use of the system) in which further processing, by the normal
algorithms of the system, will lead to a failure which we do not
attribute to a subsequent fault. ...The term an= is used to
designate that part of the state which is incorrect. ... A 1a.. Z"
is the mechanical or algorithmic cause of an error."

Clearly, faults, and hence failures, can be encountered in any programming

"" :::!:'-:::
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environment during the execution of any application.

The failure handling features of PRONET are based on a separation

between algorithmic and mechanical failures and an assumed ability to detect

and classify all occurrences of "failures". Considering the general defini-

tion of failure presented above, an ability to detect and classify all

occurrences of failures is clearly infeasible. Hence, the failure handling

features of PRONET are based on a limited view of failure. In this limited

view, a mc/hanialailure occurs when a hardware component *(processor, storage

device or communication link) has failed to perform in accordance with its i"
specified behavior. An h fur occurs when an executing process

performs a primitive operation with an invalid operand (e.g., integer

division with a zero-valued divisor or pointer dereference with a nil-valued

'."4 pointer).

The distinction between algorithmic and mechanical failures is

introduced to capture differences in the durations and causes of failures.
Algorithmic failures are presumed to be permanent and a result of faulty

programming. Hence, detected algorithmic failures lead directly to the

termination of processes in which they occur. Mechanical failures, on the

other hand, are expected to be transient and a result of a fault in the under-

lying programming environment (i.e., a processor crash or a communication link

" failure). Mechanical failures do not lead to the termination of long-lived

processes but may temporarily limit their availability.

V .q %,

D. 3 XWQHHW IIUAQ A IfL&UM
In a perfect programming environment, the send operation of buffered

communication might be viewed as passing the responsibility for processing

messages to receiving processes. In this way, processes that declare input

ports accept the responsibility for correctly processing all messages that are

sent to these ports. Processes that send messages can rely on the specified

behavior of receiving processes to ensure that their messages are handled
4 correctly and completely.

Clearly this interpretation of buffered communication is inappropriate

when processes can encounter failures during their executions. The initial

extensions developed for using CLU [Lisk77] in distributed programming S
environments [Lisk79J were based on buffered communication primitives. More

.0• . . . ..R" .0 - ' . . . . . . ..
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recently [Lisk8O], a remote procedure call (RPC) primitive has been adopted:

"RPC is a very high level primitive... For some time we were
hopeful that there might be an intermediate level primitive that
would solve many of the user's problems, and would not be as 0
expensive as RPC. Our experience indicates that there is no such
primitive, we have looked for one and have not found it."

Much of the rational for selecting RPC which is presented in [Lisk8O, Lisk82]

- is based on an inability to resolve the semantics of intermediate level
primitives (e.g., buffered communication) with potential failures and the

intended area of application of the language features being developed.

PRONET is based on an interpretation of buffered communication which is -...

sufficiently powerful to aid programmers in their task of describing inter- -

process communication, yet weak enough to allow for the possibility of

failure. The send operation of PRONET completes successfully when the message .

being sent has been correctly copied into the address space of all receiving

processes and all events which are generated by the send have been handled.

Further, the send operation is atomic with respect to failures--either all

events associated with the message transmission are handled completely or none -.-

of these events is handled (and a failure indication is returned). Hence,

after successfully completing a send operation, the sending process can assume

that receiving proc.esses will handle the message in an appropriate fashion.

Receiving processes, on the other hand, accept the responsibility (in conjunc-

tion with the network specification that oversees their operation) for handl-

ing all messages that are available on their input ports.

The crucial distinction between this interpretation and the interpreta-

tion presented earlier, involves the substitution of the words "handling" and

"appropriate" for the words "processing" and "correct" respectively. In some

applications, under certain circumstances, appropriate handling of a message

may involve ignoring the message entirely. Because of this necessarily weak

interpretation of buffered communication, sender processes that need to know

how their messages were (or will be) handled will need an alternative means of

obtaining this information. For most applications, a simple response port

will suffice. Clearly this complicates the description of such processes but

processes that do not require this information will not incur additional

costs.

'....-
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D.4 ZA ZLU AgDLML,""
An important motivation for introducing failure handling facilities into

the design of PRONET was based on the need to describe long-lived objects.

PRONET does not provide an inherent distinction between long-lived and

transient objects-all objects are processes. However, it is necessary to

distinguish between the processes in a logical network that are capable of

surviving mechanical failures and those whose activities are aborted when they. ......01
are in the scope of a mechanical failure. The activity permanent can be

applied to processes and provides e capacity to survive mechanical failures.

* , "Permanence" is an inherited property. When a "non-permanent" network 1
applies the permanent activity to one of its processes, this activity has no

immediate affect. Whenever a logical network becomes "permanent", all proces-

ses in the network to which the p activity has been applied will also

become permanent.

If any process in a "non-permanent" network encounters a failure

(algorithmic or mechanical) during its execution, the entire network fails and

all processes in the network are terminated. In this way, failures

encountered by processes are propagated to their overseeing network. Propaga-

tion of a failure continues until a "permanent" network (or process in the

case of mechanical failures) is encountered. Failures encountered by proces-

ses executing in a "permanent" network do not directly affect other processes

executing in this network. MOWN"@;

'Permanent' processes can be explicitly terminated or removed (by their

overseeing network specification) and can express their own termination but

will be recovered (as described earlier) if they have not terminated and are

in the scope of a mechanical failure.

Because mechanical failures can alter the internal state of any execut-

ing process, processes in the scope of a mechanical failure cannot rely on

information stored in their internal state after a mechanical failure has

occurred. A stable storage facility has been integrated into ALSTEN to enable

the description of processes that must rely on portions of their internal ..-*

state when mechanical failures are recovered. Like the facility proposed in

[Lisk79], process descriptions interface to stable storage by declaring stable-._-

variables and periodically "checkpointingw the values of these variables.

% % .1
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4...-.~

When a mechanical failure is detected, all processes in the scope of the

failure are halted before they can begin a new checkpoint operation. When the

mechanical failure is recovered, each permanent process halted by the failure

is restored using values saved by checkpointing and non-permanent processes

are removed from the logical network.

The features presented thus far are useful for describing long-lived

processes but do not enable receiving processes to ensure that all messages

which have been successfully delivered to their IPC space are handled in an '

appropriate fashion when a mechanical failure occurs. An important problem is

that messages will be inserted into the IPC space of a process asynchronously

and hence, a process cannot use inline checkpointing operations to ensure that

all messages which have been delivered will survive mechanical failures. For

this reason, ALSTEN provides stable ports. Any input port declared by a r 0.,,,

process may be declared with the attribute sb. All messages which have

been successfully delivered to a stable input port and not removed by the

receiving process during its execution will be available after a mechanical
failure. Messages are only removed from a stable input port when the process

performs a checkpoint operation.

DU5 M Af BZI L= =ME RDELY.IQ

The use of checkpoints, stable variables and recovery descriptions are

sufficient to describe a consistent recovery from mechanical failures, but do

not enable the programmer to ensure that the recovered state is consistent Wa.

with the externally visible behavior of the process. In [Lisk8O] it is argued

that many applications will need a capacity to incorporate 'permanence of .

N'__ effect' in their comuunications. Using buffered communiation, this property

would allow receiving processes to rely on the information contained in the

messages they receive. Hence, ALSTEN provides a checkpointing send operation

which combines both operations into a single operation and is atomic with

respect to mechanical failures.

D.6 Li flZ Z ZA LRIM .
A" The failure handling features described thus far are primarily aimed at

handling point failures (the failure of a single process). A reasonable

implementation of PRONET would be based on a partitioned and decentralized i"'-@.4

.,1%. network representation. As such, mechanical failures could cause portions of ' ..

e'.,,"" ,."'° %

k- - - , ,- , . % , ," ' - . - ., , - - . • - , , - . . - , o , - , - , , - . - , " . ,



Appendix D Failure Handling in PRONET Page 75

the network representation to be unavailable for use. Thus portions of the

network representation may not be visible during the execution of an event
~~handling clause.'

. Modifications performed by an event clause execution may implicitly

affect objects in inaccessible portions of the logical network representation,

even though the objects explicitly modified by the event clause were available

for use. Consider that port 'p1' is connected I& port 'p2' and that p2 is

available but that pl is inaccessible. In this situation the activity

"disconnect p2" can be performed but will affect pl, as pl must see the

disconnection. -

When a mechanical failure that has caused a partitioning failure is

recovered, portions of the logical network representation will need to be

updated (merged) to reflect modifications performed in other partitions. In

order to perform this merging of visibility partitions, redundant Information

.- must be stored in the logical network representation. In general this redun-

dant information will be stored in the form of back-pointers which can also be

used for efficient traversal of the logical network representation.

D-7 AUNMMN
- The important concepts developed in PRONET are based on the separation

0 of connectivity specifications from process descriptions. This separation -

allows process descriptions to be independent of one another, since they can

only describe interactions with the other components of a program through mes-

sages sent to locally declared ports and by announcing events. Thus a program-

mer concentrates on the logical structure of a program and need not be concer-

ned with such things as physical distribution considerations. The hierar-

chical structure of a PRONET program, consisting of processes and a tree of

overseeing network specifications, is particularly well-suited as a descrip-

tion of a distributed program. Important features of PRONET allow continued

execution of unaffected parts of a program in the presence of failure and '

recovery of failed processes through use of checkpointing and stable ports.

Finally, PRONET includes an intermediate level communication approach,
S-i". buffered communication, which operates meaningfully in the presence of

failures. It will thus allow the exploration of the appropriateness of com-

* munication protocols other than remote procedure call for the implementation

of realistic distributed programs.
4 I- -. -'
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An initial inplementation of PRONET on a single processor has been com-

pleted. Current plans are for a more complete implementation to be developed

to run on a network of Perq workstations. As part of the Clouds operating

system project [Mcke82] a real-time distributed data management system is

being designed [Allc82] which should greatly simplify the implementation of

PRONET and improve its performance.

p,;.V . -
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APPENDIX E .-d. .

SOFTWARE FAULT TOLERANCE:

OVERVIEW OF THE RECOVERY BLOCK SCEIE -..

Tam Wilkes

Z. 1 .INTBQDUXMQ
Ever since the first computing systems were designed and built, the

problem of the reliability of these systems in the face of faults and errors

has been a concern of designers and researchers. However, until approximately "

the last decade, most work on system reliability has been focused on the area

of hardware reliability, even though any non-trivial software system is more

complex by several orders of magnitude than the machine on which it runs. As

Randell notes ([RandT5]), a simulator for a certain machine written at the -

level of detail required by the hardware designers is in general many times

smaller than the operating system for that machine. Since the number of pos- ."

sible internal states of any but the most trivial software far outnumbers the .4'-"

number of possible states of the hardware on which it runs, the possibility of

design error in the software is correspondingly greater. Hence, the need for

methods of recovery from design flaws in software is at least as pressing as "°

that for hardware.

Also in [Rand75], Randell states:

"If all design inadequacies could be avoided or removed this would
suffice to achieve software reliability... Indeed many writers % %
equate the terms wsoftware reliabilityw and "program correctness".
However, until rliabl correctness proofs (relative to some
correct and adequately detailed specification), which cover even
implementation details, can be given for systems of a realistic
size, the only alternative means of increasing software
reliability is to incorporate provisions for software fault
tolerance."

As Svobodova has noted ([Svob79]), distributed systems have an even greater .- -

potential for providing reliability than their non-distributed counterparts:

'Distributed systems are often claimed tQ be inherently more -
reliable than systems based on a large central processor. That
is, given that a distributed system is properly designed, it
offers better reliability. First, distributed systems by their .'
very nature provide opportunities for redundancy. Second, error
propagation is restricted by physical separation of processes and
resources, And finally, individual nodes in the distributed i.. .

system may be less complex than a large central processor and, as

4,.. 0-
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a result, ought to have lower probability of failures. Basically,
distributed systems have a otenti a for being more reliable than
systems based on a large central processor. However, this
potential needs to be exploited through proper design."

PRONET, a language for distibuted processing applications which has been

under development at Georgia Tech ([Mace82]) incorporates extensive facilities

for dealing with the problem of hardware failures. However, the work to date

" on the design of PRONET does not treat the problem of software (algorithmic)

failures. Algorithmic failures present a much more difficult problem than

hardware failures. Because such failures presumably result from a logical

fault in the program, use of checkpointing and restarting will only result in

a reproduction of the failure. (In the case where a hardware failure corrup-

ted data and thus caused the algorithmic failure, such techniques may provide

a means of recovery.) Thus some capability to execute alternative code is

required, as well as some capability to undo the effects of the code which has

failed. The addition of these capabilities to a distributed system will

increase the complexity of programming in the system, since processes may

interact in the recovery mode and during the "undo" process, as well as during
their normal execution. As Shrivastava and Banatre have noted ([Shri78]),

"...appropriate programming language tools must be provided to

cope with this additional complexity in a systematic manner,
otherwise resulting programs are likely to be even less reliable
than versions with no redundancy." .' 4.

"1'-. It is in support of the design of such tools that the present survey is being

- undertaken.

In an excellent review art .cle ([Rand78]), Randell, Lee, and Treleaven

have surveyed the issues of hardware and software reliability, and have

catalogued current techniques for error recovery and fault tolerance. A -4'

repetition of their work will not be attempted here. Rather, the results of ___

their survey will be summarized, and two important techniques for software

fault tolerance - the so-called forward and backward error recovery methods

-- will be briefly contrasted. However, the bulk of the discussion will -

center on a particular backward error recovery scheme, the recovery block

method, which is discussed in [Rand75], [Rand78], [Ande8l], and many other

publications which have issued from the software fault tolerance project at

the University of Newcastle upon Tyne (most of which will be discussed below).

Recent publications which consider the application of these recovery tech-

niques to distributed computing systems will also be discussed. .,-4

'Fir'
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B.2 AM . .-.,L.

In [Rand78], definitions for many terms used in the discussion of

software fault tolerance have been provided which have been adopted by sub- 0
sequent papers from the project at Newcastle upon Tyne and also by several

other authors in the field. For convenience, some of these definitions are

reproduced here:

"The reliability of a system is taken to be a measure of the suc- .

cess with which the system conforms to some authoritative
specification of its behavior...
When the behavior of a system deviates from that which is
specified for it, this is called a failure...
We term an internal state of a system an erroneous state when the
state is such that there exist circumstances (within the . -'
specification of the use of the system) in which further proces-
sing, by the normal algorithms of the system, will lead to a
failure which we do not attribute to a subsequent fault... The
term "error" is used to designate that part of the state which is
"incorrect"...
A fault is the mechanical or algorithmic cause of an error, while
a potential fault is a mechanical or algorithmic construction
within a system such that (under some circumstances within the
specification of the system) the construction will cause the
system to assume an erroneous state..."

Note that, using the definitions of "fault" and "error" given above, the

method of repair of faults and errors in a system is very different. In

particular, the repair of a fault in a software component is a complex task

which would be very difficult to automate, and which should be accomplished by

manual means in an unharried manner. Repair of an error, on the other hand,

entails the change of the erroneous state into one in which processing may

continue correctly (within the specification of the system), or the restora-

tion of a previously-existing state which satisfies these specifications. We
shall see that this process is automatable. Thus, repair of an error is

,- required for continued operation of a system, whereas the repair of the fault

which caused the error is not always necessary for ensuring continued

operation.

E Q. 3 M s QU, .aQEM ALI 2LUMA"--
As has been mentioned above, [Rand78] provides a comprehensive survey of

techniques for hardware and software fault tolerance. The authors consider

strategies for error detection, fault treatment, damage assessment, and error

recovery as comprising a classification of fault-tolerance techniques. These

strategies are by no means mutually exclusive, as we shall see.
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3.3.1 ZX= Detention
As defined in [RandT8],

"the purpose of error detection is to enable system failures to be
prevented by recognizing when they may be about to occur."

In order to fulfill this purpose in the ideal case, however, the checks which
-' would have to be made would have to be based solely on the system specification,

* .and independent of the actual implementation to a degree probably not

realizable in practice. Also, the extent of error checking necessary would

probably fall victim to performance considerations. Thus, the complete con-

fidence afforded by the ideal case is generally not attainable, and some "very -

high" level of confidence is all that can be expected. However, all

strategies for fault tolerance depend on error checking for their invocation.

E. 3.2 ZuAWJ TCMfjjW&
Error detection seeks only to identify the symptoms of a fault, but does

not try to identify the particular fault which caused the error. The

identification, location, and removal of a fault is a complex job, since many

errors may be caused by a particula:r fault, a particular error may be caused .-

e.. .. by several different faults, the error caused by a particular fault only occur
for certain input values, etc. Thus, the automation of the task of fault

removal in software is not feasible except in very simple oases. However, the

treatment of faults by alternative means, such as replaoement strategies, is

-V more tractable; indeed, the recovery-block scheme which is discussed below is

such a strategy.

3.3.3 2Um AAamasa

As noted in [Rand78],

"Damage assessment can be based entirely in j2r±DzJ reasoning, or
can involve the system itself in activity intended to determine
the extent of the damage. Each approach can involve reliance on
the system structure to determine what the system might have done,
and hence possibly have done wrongly. The approach can be
explained, and might have been designed, by making explicit use of
atomic actions."

The intent here is that atomic actions provide a "sequence of delimitations ___

.0. of amounts of possible damage corresponding to each different error

detection point." Since, as the authors note, damage assessment is often nec-

cessary to attempts at error recovery, and "is usually a rather uncertain and

incomplete affair", it is worthwhile to expend the effort involved in limiting

the spread of damage by such means. ."-"S 'S
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E.3.4 r= ReooveMr.

Methods for error reoovery are divided into the so-callee forward and

backward automatic recovery schemes. Forward recovery schemes attempt to make

further use of the erroneous state. Thus, predictions about the location and

consequences of software faults are necessary. Such a scheme must therefore

be designed as an integral part of the system for which it is to provide fault

tolerance. Also, the questions of damage assessment and fault treatment are

intermingled with the question of how to continue to provide service. Despite

the complexity which such a scheme adds to the system it is to serve, there
*.'- are situations in which valid assumptions can be made based on knowledge of --

the system for which forward-recovery techniques provide simple and effective -,

error recovery. In particular, these methods are very effective in dealing

with such situations as errors caused by invalid input data. The exception- ..

handling methods used in languages such as PL/I and Ada are examples of

forward-recovery methods.

Backward-recovery schemes, on the other hand, involve restoration of

what is hoped to be an error-free state, and thus require no predictions of

the location or nature of faults. Rather, backward recovery is analogous to

mechanical backups in hardware systems. Information about the system state

previous to the fault is restored from a checkpoint, and a back-up process is

started. The back-up process is necessarily not the same as the failed

process, as it would presumably only fail again. In general, the back-up

process (or processes) is more simple than the original process, and may

provide only a primitive simulation of the functions of the original process

(such as forwarding messages) in order to keep a program running.

The recovery-block scheme, an example of a backwards-recovery scheme

which has been the object of detailed investigation at Newcastle upon Tyne, is

described in the next section.

.- F _E.A T E COMYR-BLOCK A ' H-

The recovery-block scheme described by researchers at the University of

Newcastle upon Tyne ([Rand75], [Rand78], [Ande81]) is an example of a

backwards-recovery method. This method is a means of providing "gracefully

degrading software" ([AndeS1]). The syntax for describing a recovery block

is:

09.. .*
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assure <acceptance test> IM
<original block>

<back-up block 1>

Anlse error; 1

where some of the "back-up blocks" may be simple retries of previous blocks. .

If a failure occurs in the original block, back-up blocks are tried until one

completes without failure and the acceptance test is satisfied, or else an error

is signalled. The back-up blocks may have to undo permanent effects made by

their predecessors before doing their own work.

.4.1 AAR. ,t-'h."
The function of the acceptance test is to ensure that the operation per-

formed on the system state by at least one of the alternate blocks is to the

satisfaction of the invoking program. Thus, an acceptance test need not be a

check on the "absolute correctness of an operation" ([Rand75]). In general, a

test is based on the present and prior values of variables global to the

alternate blocks and to the invoking procedure. Also, some means is provided

for checking whether global variables not accessed within acceptance test have

been modified, thus giving a measure of security against unforeseen side

effects.
L% I

*. It is clear that the careful design of acceptance tests is important to

the success of the recovery-block method. However, strict requirements for

correctness must often yield to performance considerations, as in the follow-

ing example from [Rand75]:

ensure sorted (S) and (sum (S) = sum (prior S))
Iy quickersort (S)
AIM Iv quicksort (S)

* else.AIn JI bubblesort (S)
else error; ..-.-

Al .Am=

Here, the strict requirement that the sorting algorithm yield a permutation of .4L"
its input values has been relaxed to a requirement that the sum of the input ." .9

values and the sum of the output values be the same.

Before a back-up block may be tried, the state of global objects must be

restored to that existing before the failed block began execution. This state

i ;*'"'"
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restoration is made possible by the use of a recoveory cache, in which the

values of global variables are stored prior to their first updates in the

. current block. A recovery cache is essentially a differential file, and is O

thus less costly in space than a full checkpoint. Since recovery blocks may

be nested, the cache is organized as a stack; state restoration for the

current recovery block requires restoration of global variable values from the

current top stack entry, and upon completion of a block, the stack entry is "

discarded, thus "committing" the results of the block.

Thus, the problems of state restoration and recovery for simple global

variables are relatively straightforward. However, in general, the actions of

interacting processes may be more complicated than simple assignment to a '

global variable; there may be, for instance, competition for global resources

(say, peripherals) or cooperative use of resources for inter-process com-

munication (say, a shared message buffer). As has been noted in [Shri78, for

arbitrary interaction of processes, the problem of the management of recovery

information and the control of processes may become extremely complex.

However, they show that it is possible to break these interactions down into

different classes - interference, cooperation, and competition - and to

develop mechanisms to treat the recovery problems posed by these different

types of interactions separately. -

4,. _,, E . 4.3 Z rrr Re o r A oo e .±n A MA am =D ndj . t M f-' .-
The bulk of [Shri78] is devoted to the consideration of the problem of

.* competing resources. This problem is simpler than that of cooperating resour-

ces for the following reasons: while cooperating processes can exchange

arbitrary information (for instance, via a message buffer), competing proces-

ses typically exchange only that information required to ensure proper synch-

ronization and sharing of resources. Thus, for competing processes, the type

of information exchanged is known to (and generally controlled by) the synch-

ronization mechanism.

However, since the information exchanged by cooperating processes may be ".v..: arbitrary, in general only the recipient of the information may verify it. In . . '-

[Shri78, the example of a producer and a consumer connected by a bounded mes-

sage buffer is considered. For verification reasons, "production" and

"consumption" of a message are programmed as a conversation, and when the

producer and consumer processes enter a conversation, they are allowed to

%. % %
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leave it only when both pass their acceptance tests. This prevents the

producer from "racing ahead" of the consumer and thus can seriously limit the

amount of concurrency possible. Whether the conversation mechanism may be

supplemented by some other mechanism to ameliorate this problem is currently

under investigation at Newcastle upon Tyne.

Another problem in the application of the recovery block scheme to .

cooperating processes is the so-called domino effect ([Rand78], [Ande81]).

This effect arises from attempts by the individual communicating processes to

achieve backward recovery. If two processes independently establish recovery

points or checkpoints, and communication between them may occur at arbitrary

times, then we may have the scenario represented in the following diagram

.... ( A n d e 8 1 ] :

Process 1: - --- ------ ------------ ------------ -------- >
,' I I I I I 1 I ':- . -

Process 2: ------------- ---------- ----------- - ---..---.

Here, the vertical lines represent occurrences of communication between the

two processes, and the square brackets indicate an active recovery point to

which the state of a process may be restored. If process 1 experiences a

failure after its most recent recovery point, it may try to restore its state

at that point. Since it has not communicated with process 2 since that point,

-.- process 2 need take no recovery action. If, however, process 2 encounters a

failure after its last communication with process 1, process 2 must restore

its state to its most recent recovery point, which occurred before its last

communication. Thus process 1 must be restored to a point at or before

process 2's recovery point, since the state of process 1 was changed by the
L" information exchange which took place after that point. However, the most
e. recent recovery point to which process 1 can restore occurred before this

exchange, which will similarly cause another rollback in the state of process

2, etc. Thus, an uncontrolled propagation of rollbacks in process states may

occur, much like a line of toppling dominos. This effect does not occur for ..

*..-.independent, competing processes, since no such information flow occurs

between them.

Thus, a basic problem in recovery is the search for a "consistent" set

* .• o- .. . • . . . .* . o . . . . . . . . , . . . . . . . ° . . . . . . . .. . "-"
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of recovery points, that is, for a set of checkpoints for which the domino

-' effect does not occur. A consistent or usable set of recovery points is cal-

led a recovery line ([Rand78]). '

As Randell has shown ([Rand75]), in order to obtain a consistent set of

recovery points for a group of freely-interacting processes it is required -

that the pattern of interactions among the processes be known in advance. As

this is a rather unrealistic requirement, we must consider two alternatives

([Verh78]): (1) prevent the interactions, as in implicit or explicit locking,

or (2) synchronize the processes with respect to recovery. We shall see that ..

it is the latter route which has been chosen by the group at Newcastle upon .

Tyne.

Recent work on recovery lines reported in [Ande8l] has led to the fol-

lowing definition of a restorable action:

"An atomic action is said to form a restorable action if: (i) on
entry to the atomic action all processes establish a recovery
point, (ii) these recovery points are not discarded within the
atomic actions, and (iii) processes leave the atomic action simul-
taneously." (Ande8l])

Within a restorable action, backward recovery may be accomplished by restoring

the recovery points established for each process upon entry to the action if

an exception is raised by any of the processes involved in the action. This

protocol can be seen to be equivalent to the conversation protocol described

above.

Work on extending the recovery-block method to cooperating processes is

described in [Ande8l]. In particular, strategies for avoiding the domino

effect are discussed. As has been mentioned above, requiring communicating

processes to enter into conversations from which all processes involved must

exit together (thus committing the results of the conversation) will avoid the -

domino effect at the cost of lost concurrency, much as for the requirement of

two-phase looking for synchronizing processes. Indeed, the conversation

mechanism is seen to fulfill the requirements of a "recoverable action" as

defined above. In work by Russell ([Russ8o]), certain protocols for ordering

message sending and receiving have been developed for which it can be shown

that uncontrolled rollback cannot occur.

While investigating the simpler problem of competing processes, however,

A..:~ ~ ~~* ... ........ ....,. . . ,..... . -...... ,,- ... *..-.. .. ..-. ..- '..,'':" " -"" .''."- . *"-" . " ' ."-" "" . . '""''''''-.- . " " " ." " " " : 4. , . ".*- - ." - .* " , ," - -" ' " - ", -
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Shrivastava and Banatre have developed language features to support recovery ..

which may have more general interest. They introduce the idea of a

reooverable monitor, in which access to resources is controlled by a feature

called a port, which is similar to the class and "inner" constructs of SIMULA

or Concurrent Pascal. Assuming a Concurrent Pascal-like language, the syntax

of a port construct may be summarized as follows ([Shri78], [Ande81)):

.rentr] JjM <name> = .2rt (formal parameters) .
"entry is an optional feature"

beg.i.n ...local variable declarations...
... procedures/forward entry procedures, e.g.: ...
forward e procedure <name> (formal parameters);

...other procedures/forward entry procedures...
rbac entry Rrocedure <name>;

"this procedure is optional"
~begin

"sl and s2 are statements, where sl is the prelude
and s2 is the postlude"

And "of port definition"

The organization of the port construct reflects (and enforces) a resource-

access protocol considered in (Shri78]. There, the types of recovery actions

necessary when failure occurs at various points in the protocol are developed.

In particular, the protocol requires that only the prelude and postlude of the

port may acquire and release resources, respectively. Also, the backward.

entry feature allows specification of an "undo" block, whose purpose is to

undo the effects of the execution of the forward entry blocks, which is neces-

sary for state restoration of arbitrary global objects.

If failure occurs during the prelude of a port (sl), this means that all

alternatives of the resource-acquisition block have failed, and thus the port

fails. If failure occurs after acquisition and before use of a port (between

sl and inner), then to restore the state of the (abstract) port, the only

action required is the release of the acquired resource; thus, the postlude

(s2) must be executed. The use of a resource (inner) is considered to be an

atomic call on a recovery block, and if failure is signalled, then only execu-

tion of the postlude is required. If failure is detected after the use but

before the release of the resource, then the backwards procedure must be

executed to undo the effects of the user procedure, and then the postlude must

be executed. A failure during the postlude (32) means that it was not pos- e. _

~.O4
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sible to release the acquired resource-- an unrecoverable error.

As has been noted above, forward-recovery methods must be designed as an

integral part of the software which they are to serve. Thus, they may add

significantly to the complexity of this software. In contrast, the recovery-

block scheme provides a means of explicitly separating the error-detection and

recovery functions from the rest of the software, and thus should add little .

to the conceptual complexity of a module. In addition, it is possible (and

indeed desirable) that the design of any back-up blocks provided proceed

independently of the primary block and of each other. This independence of

the alternative blocks may produce a significant reduction in the complexity

of software employing the recovery-block method as compared to software using

ad hoe error detection and recovery methods ([Ande8l ]). Also, the requirement

of acceptance tests is more rigidly enforced than the use of assertions in

some systems, thus providing an enforced verification method.

E.4.7 Zr2oblma jn n or 1 I= Distribu w "'u'"

Several problems crop up in the implementation of backwards-recovery

* schemes for loosely-coupled distributed systems under decentralized control

which are not apparent in implementation for non-distributed systems

([Ande8i]). Cooperating processes in such systems must exchange control

information in addition to exchanging data in order to coordinate the recovery

process in the absence of a central coordinator. In an unsafe message-passing

system, there may be significant delay between the sending and reception of

these control messages, or they may become corrupted or lost. This adds

greatly to the complexity of the recovery problem.

If a distributed recovery system relies on planned recovery lines, there

is a need for coordination of the exits of processes from restorable actions

in order to insure the existence of these recovery lines. This necessitates

the existence of a central coordinator, such as that in System R (see below),

which governs a two-phase commit protocol not unlike the conversation

mechanism discussed above.

.4. A system may instead search for unplanned recovery lines. Such a system

is studied in the occurrenoe graph scheme ([Mer178]). An occurrence graph is

a historical record of the dependencies between communicating processes due to

the information flow between them. Such a record is kept by each process in

-'....
V---""--- "."
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the system. Should a process need to restore a recovery point, it must send a .

FAIL message to those dependent processes as given by the occurrence graph in

order to maintain the consistency of the system state. Each process which
receives a FAIL message must cease its normal activity and also send out FAIL

messages to all of its dependents. The assumption must be made that the FAIL ,p,-'.'.

messages propagate faster than normal messages (and that none of them are .

lost). In this way a recovery line may be eventually identified. This scheme

is known as the chase protocol. Unfortunately, recent investigations have

shown that this method is highly prone to the domino effect ([Ande8l]).

E.5 OT=E BACrRS-RC0Vmf SC...

Several recovery schemes which bear similarities to the recovery block . .

scheme have been discussed in the literature (see [Ande81]). System R, an

experimental data-base system ([Kohl8l], [Gray8l]), employs a "DO-UNDO-REDO"

system for treatment of hardware failures via maintenance of an incremental

log with write-ahead. A centralized "coordinator" controls a two-phase commit

protocol, and independence of actions is required to avoid the domino effect.

The REDO of an action is effective only for idempotent actions (i.e., those

for which multiple executions are valid), and the System R scheme is thus less

powerful than the alternative-block strategy of the recovery-block method. ..

Another similar method is the deadline mechanism for real-time systems, where .- -.,

the acceptance test of the recovery-blook scheme is replaced by a time-out

test. Yet another fault-tolerance method is the so-called N-version scheme,

in which the results of applying several different algorithms to the solution -

of a problem are compared for agreement. .. -.

E. 6 MZMM I=fl DZ A JIM A=IU=A-Z UZLB-LM
In a recent paper from Newcastle upon Tyne ([Cris82]), Cristian

initiates the development of a formal view of the concepts underlying software
fault tolerance in order to elucidate the unity between programmed exception

handling and default exception handling using automatic backwards recovery. .

Also, his formal development demonstrates the existence of a class of design .

faults which cannot be treated using automatic methods such as the recovery-

block method. "

Cristian bases his model on a view of programs as a hierarchy of ,.'-

modules, assuming that this structure is the result of the application of data
61P -

%
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abstraction techniques to program development. Thus, a user would view a

module M as an abstract variable of some abstract data type, that is, a set of

abstract states and transitions between these states (produced by the S

operations exported by M). The internal structure of M (not visible to the

user) is a set of state variables and procedures which operate on these

variables.

The internal state of the module M is defined as the aggregation of the-0

abstract states of the state variables of M. The abstract state of M is the

result of applying an abstraction function A to the internal state of the

module M. Note that this definition is recursive; the state variables of M

may themselves be the abstract states of lower level modules. Presumably,

however, the recursion bottoms out in the lowest level modules, where the

state variables are actual data structures.

The abstract state of a module is in general a partial function defined -

only over some set of internal states which satisfy an invariant predicate I.

The states which satisfy this predicate are said to be consistent with the

abstraction which is supposed to be implemented by the module. However, a

module may during execution pass through states which do not satisfy this .

invariant predicate, and thus for which the abstract state is not defined.

., .. The intended service of a procedure P exported by the module M is

specified by a relation post over pairs of initial and final states (s',s) of

the state transition accomplished by the procedure. A pair of states (s',s)

is said to be in post if the final state s is the intended outcome of invoking

the procedure P in the initial state s'. The characteristic predicate

associated with the relation post is called the standard postoondition of P.

The standard domain (SD) of a procedure P is defined as that set of

initial states s' for which execution of P terminates normally in states s

such that post (s',s) holds. If P is invoked in an initial state s' outside

its standard domain SD, an exception occurs. Such states s' belong to the ex-

0optional domain (ED) of P, that is, the set of states which do not belong to

the SD of P.

To illustrate these concepts, Cristian presents the following short

example. Let intended service for some procedure P exported by a module M be
specified by post zz i = i' + J', where i' and J' denote the initial values of

state variables i and j of M, which are of type positive integer. If the body

-... ...... ..... ........ ......-..-...................

" " "_" " " - .". ." * . ,. 9 . ,' ' ' ,, • ' . ." , ." " - - - . " ." .-



- .7

Page 92 Software Fault Tolerance Appendix E

of the procedure P is

i := i + j

and PI is the set of machine-representable positive integers, then the stan-

dard domain SD of P is i' + J' in PI, and the exceptional domain ED of P is i'

+ J' not in PI. Had the programmer by mistake typed "" instead of " " in the

body of P, then the SD and ED of P would be

SD == it = I) and (i' 0 or it= 2) ED -SD

A programmer, in the design of a procedure, may anticipate that the procedure -

may be invoked in initial states outside its standard domain, i.e. in its

exceptional domain. The programmer may detect such anticipated exception o-

currences by such means as run-time checks. However, in general such checks

may be redundant, since the condition which the check is supposed to detect

may be detected by the hardware before the check can be executed. Also, in

general it does not make sense to continue normal execution of a program after

such a condition becomes apparent. Thus some languages contain features

allowing the programmer to express actions to be undertaken in place of normal

execution upon an exception occurrence. Such features are termed exception

As an example of the explicit programming of handlers for exception

occurrences, Cristian gives the following:

" ao P 'Unaa OW; 'S

i "= i + J [OV -> .AI&M OW];
i := i + k [OV -> i := i - J; ignal DI;

Here, the first line of the example expresses the existence of two exit points

from the procedure P: the normal exit, and another exit on occurrence of the

exception OW. On the third line, if the addition causes an overflow exception

(OV), a handler which merely signals the exception OW to the invoking

procedure is executed. Note that, if the addition causes overflow, the

assignment is not executed, and thus the initial state remains unchanged.

Similarly, on line four an OV exception will cause execution of a handler

which undoes the effect of the preceding line (by subtracting the value which

was added there), and then signals OW. This has the effect of restoring the

initial state. .

Vt %° %
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The standard postcondition for this procedure may be expressed by post

== i = i' + * + k'. However, if the exception OW is signalled by P (i.e., if

it uses its exceptional exit), then its exceptional postoondition -

post (OW) (i = i') and (Q = J') and (k =k')

is satisfied. In general, if E is an exception signalled by a procedure P,

then post (E) specifies the intended state transition when P signals E.

The procedure P given above is said to be total, since its behavior i.

specified (by means of its standard and exceptional postconditions) for a

initial states, both in its standard and exceptional domains. Also, i

exceptional postcondition is of the form A(s') = A(s), that is, the abstrz ;

state upon exceptional exit is the same as upon invocation. A total operati.

for which post (E) has such a form is called an atomic operation.

Here, Cristian notes that since exception detections may signal attempts

-' to violate invariants which are maintained by communicating processes, the

notions of atomicity with respect to exceptions (recovery atomicity) and

atomicity with respect to synchronization (concurrency atomicity) become

interrelated.

As has been noted above, when an exception occurrence is detected, it is

possible that an inconsistent state exists, that is, one for which the

invariant I of the module M is not satisfied. Since further use of an

inconsistent state can lead to unpredictable results, it is necessary to

recover some consistent state. The set of state variables of the module M for '

which a consistent final state s may be reached by modifying the state these

variables have in the inconsistent state i, and for which the final state s

satisfies the relation .,

I (s) and post (E) (s',s)

is called a recovery set (RS). Further, an inconsistency set (IS) is a

recovery set for which, for any other recovery set RS, IISI <= IRSI (where the

vertical bars indicate set cardinality). Thus, IS is just the smallest of the

(in general) several possible recovery sets.

When atomicity with respect to exceptions is desirable, there are some

other recovery sets of interest. The inconsistency closure (IC) associated -. 0

with the inconsistent state i is defined as the set of all state variables

modified between entry into the procedure P and the detection of an exception

.1 .
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E during the execution of P. Note that IC is trivially a recovery set, since

the final state s is identical to the initial state s' upon restoration of the

initial states of all the modified variables, and

I (s) and (A (s') A (s))
4

is thus satisfied. A crude approximation to the IC is obtained by storing the .'.-.

whole set of the initial states of the state variables of M, obtaining a corn-

plete checkpoint.

If atomic behavior is not necessary for a procedure P, then forward

recovery may be used, as discussed above. Then the recovery actions are "

(necessarily) based upon the designer's knowledge of the semantics of P. If,

however, it is desirable that P behave atomically with respect to exceptions,

then the use of IC sets or checkpoints to restore a consistent state is neces-

sary. As has been noted above, this method is called backward recovery. As

we have seen, it is possible that the IC or checkpoint may be determined

automatically, yielding automatic baokward recovery, in contrast to explicitly

programmed backward recovery.

As defined above, a necessary condition for the atomicity of an opera-

tion is that the operation be total. However, in practice the design of total ;

operations is difficult. Thus, in most cases the designer of an operation

anticipates only some subset of the exceptional occurrences possible in that

operation. The true standard and exceptional domains of the operation may

therefore be other than those which the designer imagines. The portion of the

exceptional domain for which the designer provides a specified exceptional

exit point is called the anticipated exceptional domain (AED). That portion

of the ED not included in the AED is called the unanticipated exoeptional

domain (UED). The operation may terminate normally when invoked in its stan-

dard domain, in a state satisfying post (E) when invoked its anticipated

exceptional domain, and in an undetermined state when invoked in its

unanticipated exceptional domain.

To illustrate these concepts, Cristian rewrites the example given above

as follows, where the intended and exceptional services were specified by the

relatiens

post == i X i' + J' post (OW) =i i') and (j = J')

and the procedure body is

.... ::.,.

.... .............. ................... . .'p
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.Dr P AISA OW;
i := ioj [OV -> a Ow];

Here, the programmer has mistakenly typed "*" instead of . ,. Then the

domains for this example are

SD == (i' = J') and (i' = 0 or i' = 2)
ED == SD

AED == SD and (i'*j' not in PI)
UED == SD and (itlil in PI)

There are several possible outcomes of the invocation of an operation in

its unanticipated exceptional domain: it may never terminate (go into an

infinite loop); a lower level procedure may detect (and propagate) an excep-

tion not anticipated by the designer of the operation, and for which a handler

Y." does not exist; the operation may terminate at its standard exit point in a

state not satisfying its standard specification; or it may terminate at its

exceptional exit point in a state not satisfying its exceptional

specification.

The problem of handling unanticipated lower-level exceptions is treated

in Ada by continuing the propagation of the lower-level exception to higher

4.. levels if no handler is present. Cristian claims that this solution is

dangerous for several reasons. According to the principle of information .

hiding, the upper level procedure may know nothing of the lower level excep-

tion, and thus have no handler for it. Also, continued propagation violates

the principle that the flow of control should return from the invoked

procedure to the invoker. In effect, the flow of control is through an

-4 undeclared exit point from the procedure propagating the exception.

A simpler solution, Cristian states, is the provision of default hand-

lors for these unnamed exceptions by the compiler. This implicitly-provided

Kr handler may be used as follows:

2Mrg P .A19nAk E;

¢ ,' end [ -> Dli]; '""

Here, DH denotes the default handler, and the " " before the arrow denotes any

exception for which there is no handler explicitly provided.

. .- .~ . . . . .
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The purposes of such default exceptic- handlers may be the masking of

exceptions, that is, making it appear to higher level procedures that no

exception has occurred at all; the recovery of a consistent state; or the

signalling of an exceptional occurrence to a higher level procedure. The CLU

language is oriented towards the latter goal, in effect providing a default

handler of the form

DH == FAILURE. 0

The language SESAME under development at the Universtity of Grenoble is

oriented towards both recovery and signalling, providing

DH == reset; .Aj. FAILURE.

Here, the reset primitive restores the initial state of the operation.

The recovery block mechanism, on the other hand, is oriented towards

fulfilling all three goals. A recovery block, such as

RB == ensure post .23L P0
... l byz P1 &I= FAILURE;

may be expressed in terms of default exception handlers as follows:

RB ==PO reset;

P1' [ -> reset; M FAILURE]]

where

Pi' == be Pi; -post -> gal FAILURE] end;

for i 0 0, 1.

Thus default handlers are at least equivalent in power to recovery blocks. - -

This suggests that recovery blocks are implementable under any system which

provides default exception handlers and a reset primitive. Although less

powerful than default exception handling, the recovery block scheme is

preferable (at least at the application level) since it provides a useful

abstraction of a rather messy technique.

An operation is said to be weakly tolerant to an exception D if D is •

detected and the (programmed or default) handler of D recovers a consistent

state before propagating D to the invoking procedure. An operation is strong- .

ly tolerant to D is it can mask the occurrence of D to higher-level

procedures. As may has been seen from the discussion of automatic error ---

recovery above, these methods may be used to render the transactions of a

• r-.
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system strongly or weakly tolerant to detected unanticipated exception

occurrences.

A procedure is said to contain a design (algorithmic) fault if its UED -

is non-empty. A system strongly or weakly tolerant to failure occurrences

":/-" caused by design faults is called design fault-tolerant.

The commitment interval of a transaction is defined as the time interval

between the beginning and the end of transaction execution. If there is a .'. . -

design fault in the code implementing the operation, however, the acceptance

test may not detect the consequences of the fault (since, by the definition of

design fault, the acceptance test was not designed such that the part of the

exceptional domain in which its effects fall was checked by the test). Thus

the acceptance test will be passed, the results of the transaction committed,

and recovery made impossible should the consequences of the design fault

manifest themselves later. The time between the manifestation of a design

fault and the detection of its consequences is called the latency interval.

Automatic (or programmed) backward error recovery methods are adequate

if the latency intervals of all transactions are contained within the respec-

tive commitment intervals of the transactions. However, these methods cannot

cope with situations where the latency intervals of transactions may stretch

* -. over several successive transaction executions.

The prevention of such situations is tied in with the problem of the

adequate specification of acceptance tests such that the UED of an operation

is empty, that is, so that there are no design faults (undetected exceptional ..-

occurences) in a system. This problem is a current focus of research at New-

9 castle upon Tyne.

E.7 DIBRZQUM .11 lZ=lI UMN= *

Work by the group at the University of Newcastle upon Tyne continues in

the area of software fault tolerance ([Rand81]J. Recent work there includes

* investigations into the design of reliable remote procedure call mechanisms

([Shriv82]).

Problems in the implementation of recovery blocks include the selection

of checkpoint intervals and of appropriate points at which previously check-

pointed information may be discarded ([Russ8O]). Since the discarding of

checkpoint information is equivalent to commitment to the results of the chec-

"--~..............,................ .:.... ... ... ....... . ...... .............
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kpointed block, this issue is of no small importance. Another problem is the

design of acceptance tests for the recovery blocks, which is discussed in

detail in [Ande8l]. It is this problem which, as has been noted above in the 0

discussion of [Cris82], leads to inadequacies of automatic backwards-recovery

systems when design faults may manifest their presence after the commitment of

the results of the affected block. The proper design of acceptance tests is a

current thrust of research at Newcastle upon Tyne.

For distributed systems, the problem of coordination of the separate

processes in a recoverable action may be solved by the two-phase commit

protocol of Gray ([Ande81]). Here, a separate "coordinator" process ensures .\' -.

that, if any process requests backward recovery, all processes are instructed

to restore to their recovery points. This is an extension of the "conver- . ....

sation" mechanism described above. Work has started at Newcastle upon Tyne on

a search for communication protocols for recovery which can identify recovery

lines without the necessity for a central coordinator, or the exchange of

large amounts of control information on a (possibly unsafe) message-passing

system ([Ande8]).

A possible strategy which should be considered in adding algorithmic-
failure recovery mechanisms to PRONET is the notion of "overlaying" a back-up -. e
process on the address space of its failed predecessor. This scheme would

have the additional advantage of allowing transparent replacement of existing

permanent network processes. Old software could be replaced at an appropriate

time (say, at a checkpoint) by overlaying a new version on the address space

of the old software, without having to halt the entire program. A similar

scheme is discussed in [Ande8l], where it is suggested that older versions be 7Th
retained as the back-up algorithms.

Allchin and McKendry ([Allc82]) have proposed that recent work in the

database field on "semantic correctness4 (as opposed to strict enforcement of .7,
correctness criteria, such as serializability) may be extended to the

decentralized global operating system for a local area network which is

currently under development at Georgia Tech. In their model, support for data

management is constructed using abstract data types - instances of which are

"objects" -- together with nested actions. They argue that serializability is

often too strong a correctness criterion for the abstract behavior of an -'JO

object, and that it is sometimes necessary or desirable -- especially for

........................ '-.........-.-..-...-.. ,.............,-,, -.-- .--....-... -... -.-... °.
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efficiency considerations - that the implementation of an object violate

strict serializability. Synchronization and recovery for objects are thus J
user-defined, since the writer of an object has semantic knowledge of the

object which would be extremely difficult, if not impossible, for the system

to determine.

Similar considerations may be applied to the design of algorithmic fault

tolerance features in PRONET. In particular, the use of knowledge of the

writer of a recovery block about the objects on which the block is based may

lead to increases in efficiency in the use of the recovery cache. Another

possible line of investigation would be the application of Allchin's object-J5
-" based recovery model to backwards recovery. Investigations into automatic

backwards-recovery schemes thus far have been concerned with action-based

recovery, that is, the recovery information has been associated with the

operations rather than with the objects. Only very recently has work appeared

which is concerned (even peripherally) with recovery in object-oriented

languages or systems ([Cox83]).

Considerable further study of the reliability issue is required.

Programing techniques must be developed to effectively utilize the failure

handling features. These techniques may influence future refinements of the

process description language, since they are likely to be rather complex.

• I
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APPENIX F L
".

ASURVEY OF QUEUEING NETWORK MODELS OF COMPUTING SYSTEMS i•

John A. Miller

- F.1 INRUCTlIN

In the design and analysis of computing systems, because of their

ever increasing complexity, it has become necessary to construct models of

these systems. The use of mathematical or other suitably precise models,

enables one to abstract the essential features of systems for detailed study

of their behavior, interactions, and effects on total system functionality and

performance. This process of abstraction and quantification has the advantage

of enhancing the understanding of systems. For example, in attempting to

.- understand a particular operating system, one might find the high level

approach of a model more palatable than trying to ascertain the behavior of

the system from the knowledge of which bits get set when. An even more

important advantage of modeling is that it facilitates the use optimization in

- designing or improving systems.

For a model to be of use in studying a complex computing system, it must

. come to grips with the following complications: The demands placed upon the

system are of a probabilistic nature, various activities are occuring at bar"

" various places in the system, and finally these activities may be interdepen-

dent and occur concurrently. Queueing network models, first introduced by R.

R. P. Jackson [Jack5h], are a useful tool in dealing with these com-
plexities. Basically, these models represent the system as a network of nodes

and arcs. Each node represents a device in the system and is composed of a

set of servers that are feed by a queue. Each are represents a possible flow

path for jobs or work requests. From a suitable specification of the model (a
set of equations), the model can be solved to determine the performance

"-..'.- characteristics of the system, e.g., throughput, response times, device

.J. utilizations, and queue lengths.

The purpose of this paper is to survey queueing network models for com-.

puting systems. The paper is divided into two parts. In the first part we

will consider the mathematics of queueing networks. Specifically, we will

• .'1 *".-. -
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consider the elementary theory, various solution techniques, and software pac-

kages used to solve queueing networks. In the second part of this paper we

will consider some specific modeling studies. This will be done from an

- .evolutionary point of view (from simple uniprocessor systems to complex

distributed processing systems). A commment on notation is in order at this

point - the symbols E and TT will be used to denote the summation and product

operators respectively. "

F. 2 OURUEING NETWORKS
F. 2. 1 JW The-ry

Before considering some of the more complex techniques used to a.

.- solve queueing network models, let us first examine some of the elementary

theory. We first consider open Jaoskson networks [Heym82]. The solution to

such networks is particularly simple since the distributions are Markovian

(probabilities are dependent only on the current state of the system, not on

its history or elapsed time). Specifically, the model makes the following

assumptions.

1) (Structure] The network consists of N interconnected service centers.

2) [Arrivals] Exogenous (from outside) customers arrive at service center i "

according to a Poisson process (exponential interarrival) with rate Y-"

3) [Routing] After receiving service at center i, a customer leaves the

network with probability rio or goes instantaneously to service center j with

probability rij (where node 0 can be thought of as a special source/sink

node). The routing probabilities j form a Karkov chain with transition

(routing) matrix R = (nij).

4) [Service Center] Service center i consists of an infinite queue that feeds

ci identical servers. The service discipline is first-come-first-served

(FCFS), and the service times are independent identically distributed

exponential random variables with mean 1/ui.

We will want to obtain solutions to these types of queueing network

models, that will specify the probability of the system being in a certain "

state. Here the state of the system will be a vector that specifies the num-

ber of customers at each service center, a = (Sl,S2, ... ,SN From this

information one can then calculate other characteristics of the system, e.g.,

waiting times, response times, and throughput.

First we need an expression for the total asymptotic arrivals at each

...... ........................ .................................-.....
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queue. This is given by the traffic equations, where arrivals at queue i are
* given by

aS
ai Yi + Ejil..Ntj~ji for i 1..N.

Thiswic can..,N beThsis a set of N equations in N unknowns, a which canN
shown to have the following solution

a = Y(I - R)-1.

With this result in hand we are ready to find the probability that the
system is in state a, P(s,t). Specifically, we are interested in the steady
state solution where the system is in statistical equilibrium p(s)=

ljztP(s,t). Note, transient state solutions are also useful, but are

generally harder to obtain.

To obtain a steady state solution, we apply the principle of conserva-
tion of flow to get a set of flow balance equations* These equations can be
complex in general, but are not difficult fo:* a single queue such as an H/H/c
queue. An MIM/c queue has an effective service rate of

u s 1 su ifsa<ca

where s is the number of customers in the system. The flow balance equations

specify that the rate at which customers leave state s, (y~us)p(s), must equal
-, the rate at which customers enter state s, yp(s-1) + u, 1p(5,1 ). Hence -the *w' *

flow balance equations are

yp(O) =up(1) -

*(y+u 5)p(5 ) Z yp(s-1) + us~iP(s+1) a > 0

which can be solved recursively to obtain after normalization

p(s) =(p(0)(y/u)3/sI if s < c

fp(0)(y/U)3/c~csc -

where p(0) =[g 5=0 **0 j(Y/u)3/sl + (y/u)c/cI(1-y/cu)]l.

Getting back to the original problem, thanks to the J. R. Jackson

theorem [Jack57J, we can decompose the network into N M/M/ci queues. Thus the . -

solution is formed from the product of independent component probabilities, *.'

k9!
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p(s) - TTi-l..NPi(si)
where Pi(si) pi(O)(ai/ui)5i/sil if si < c"

{ ~Pi(0) (ai/ui llci c si-ci  -,@

and pj(O) is the analogous normalization sum. Notice that the key to the

tractability of this solution is the fact that a product form solution could

be found.

Closed Jackson networks are also a useful type of model. The assump-

tions for closed networks are the same as those for open networks, except that

there are a fixed number of customers (jobs) that circulate through the

network (i.e., there are no exogenous arrivals or departures). Using the

Jackson-Gordon-Newell theorem [Jack63, Gord67], we can obtain a product form

solution similar to the one obtained for open networks,

P~e) : CTTi=..NpA(:i)
where piiwhr i(si) = (ai/ui)Si/si! if si < ci

{ (a/ui)si/ci eisici -

and C is the normalization constant.

These two types of queueing network models form the basis for the

elementary theory of queueing networks. When their assumptions reasonably fit

* the real-world problem being analyzed, they provide easily obtained exact

solutions. However, the real-world is usually not so cooperative, so that

solution techniques to more general models will be needed.

F.2.2 AkgJM±Q 2 '1.

When faced with complex prcblems, it is advantageous to have a large

arsenal with which to attack the problems. Below is an overview of some of

the more useful techniques used to solve queueing networks. They are
.5..

presented in the rough order in which one should try to use them, i.e., if a

problem yields to exact analysis use it or try the next approach, etc. ..

F.2.2.1 Exact Analysis

Here we consider a general solution technique that yields exact closed-

form solutions. Models that have such solutions are called BCMP networks

[Bask75], and are generalizations of Jackson networks. For a model to be a

BCMP network it must satisfy the following set of assumptions.

1) [Structural The network consists of N service centers and K classes of :.

"O

..-.*, 44**/.5h . .,...-..- ,-... ....... ... 4. .. .P . . .. ,
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customers.

2) [Arrivals] The types of arrivals determine the type of network. An open

network has exogenous arrivals, a closed network does not, and a mixed network 01

is open for some classes and closed for others. There are two basic types of

exogenous processes. In the first, the arrival rate to the network is Poisson

with mean dependent on the total number of customers, y'(M(s)), where M(s) is

the number of customers in the network. In this case, the exogenous arrival

rate at which class k customers arrive at center i is Yik = Y'qik where the

'ik' s are fixed probabilities. In the second, the arrival rate to subchain h

(see below) is Poisson with mean Y'(M(SIEh), in which case Yik y'qik for

each subchain.

3) [Routing] A customer of class k who completes service at center i will next

require service at center j in class 1 with probability rik,j The routing"

probabilities rik,jl, form a Markov chain with transition (routing) matrix R

(rik,jl). The Markov chain is assumed to be decomposable into m subchains,

where El,...,Em denote the sets of states of these subchains (a state in this

, context refers the customer (center i, class k)).

4) [Service Center] There are four types of service centers allowed in BCMP

networks. A type 1 service center consists of an infinite queue feeding ci "

identical servers. The service discipline is first-come-first-served (FCFS),

and all customers have the same exponential service time distribution. The

service rate can be state dependent, u(M(si)) where M(si ) is the number of

customers at the service center. A type 2 service center consists of an
d.*" infinite queue feeding a single server. The service discipline is processor

Ni/* sharing (PS), and each class of customers may have a distinct service time

distribution. Note PS is the limiting case of round robin (RR) where the time

* quantum approaches zero. A type 3 service center has no queue and ci servers, .

so that at any time the center can hold at most ci customers. Each class of

customers may have a distinct service time distribtion. A type 4 service

center consists of an infinite queue feeding a single server. The service

displine is preemptive-resume last-come-first-served (LCFS), and each class of _

customers may have a distinct service time distribution. Note in LCFS an

arriving job preempts the server and get service until it completes (preempted

job resumes) or is itself preempted [Klei76].

In types 2, 3, and 4 the service time distributions are arbitrary, but

must have rational Laplace transforms. Under this slight restriction, one .. ".

'.-.............-'---..-.--- -.....-- , .-. ,..........-'........-....w.-...--. ..-- .-..-.
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able to represent the service time distributions as a sequence of

exponentially distributed stages using the method of stages [Bask75].

To solve BCMP networks, one can follow a procedure similar to the one 0

given for Jackson networks. Here the state of the system is given by s

(S1,...,SN) where each Si is now a vector that completely specifies the status

of service center i, si = (Sl,... ,Snj) where ni is the number of customers at

center i and a is the class of the Jth customer in line. The traffic 0

equations for each subchain Eh are

eik = qik + EjleEhejlrjl,ik for (i,k)eEh

* or multiplying through by y' to get a more familar form S

aik Yik + EjleEIJlPjl,ik for (i,k)eEh .

These equations are a direct generalization of the ones given for Jackson

networks and can be solved similarly.

We are now in a position to find the steady state solution, using what

are called the (local) independent balance equations, which equate the rate of

flow into a state by a customer entering a stage of service to the flow out of

that state due to a customer leaving that stage of service. Note, if a '

customer is queued, his stage will correspond to the stage of service he will

be in when he next gets service. Since the global balance equations are the

sum of the independent balance equations, independent balance is a sufficient

condition for global balance. The solutions to BCMP networks are specified by

the Baskett-Chandy-Muntz-Palacios theorem. The steady state probabilities for

the case of type 1 arrivals and type 1 service centers are given by . -

p(s) = Cd(s)TTi=1..NPi(si)

where Pi(Si) = (1/ui.niTTJ..nieisj

d(s) = TT
"= ... )-yk

and C is the normalizing constant. The rest of the cases are similar but

somewhat messy products (see [Bask75] for details).

This solution is similar to the solutions obtained for Jackson networks.

It is again a product form solution, implying that specific solutions can

.- .- easily be computed. In fact, BCMP networks define a very general class of

queueing network models that yield exact closed-form solutions. These models

are flexible enough to be useful in modeling real computing systems. For

...........................-.'.'-.-.*. . ' ; ." , "" " "r d r ... ".*.*. ,c-.-'..,-.>*"...............
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example, type 1 service centers (FCFS) are good models for secondary storage

I/O devices. Type 2 and 4 service centers (PS and LCFS) are good models for

processors since LCFS is an efficient preemptive scheduling algorithm and PS S

is limiting round robin (RR). And type 3 service centers (no queueing) are

good models for terminals and routing delays in computer networks. If

however, we violate one of the basic assumptions we may not be able to find an

exact closed-form solution.

F.2.2.2 Operational Analysis

If the purpose of the analysis is to study an existing system for say

tuning or upgrading, and statistics can be gathered by monitoring the system,

then operational analysis is a useful and easy to understand tool [Denn78].

It replaces the usual assumptions of stationary stochastic processes used in

classical queueing theory, with simple operational (measurable) assumptions . .

that can be verified by monitoring the running system. The basic assumptions

are the following.

1) [Measurability] All quantities of interest are precisely measurable.

2) [Flow Balance] During a reasonably long observation period, the number of

arrivals at each service center approximately equals the number of departures

(completions) from that service center.

3) [Homogeneity] The routing of jobs must be independent of local queue

lengths, and the mean time between service completions at a given device must

not depend on the queue lengths of other devices.

To use this approach one measures certain basic quantities directly from

the system, typically the following.

T length of observation period

A number of arrivals in time T
B : total time the system is busy in time T O
C = number of completions in time T

These quantities are then used to compute other quantities called derived

quantities, that will hopefully give a reasonable characterization of the

average behavior of the system. Some of the more important derived quantities 'O

are the following.

y = A/T = arrival rate
X = C/T = output rate
U = B/T = system utilization ..- O
S = B/C = mean service time

Further there are operational laws and theorems that can be shown to be true

* ........ . . . . . .
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when the system satisfies the basic assumptions. Examples of these are the

following.

A = C : job flow balance
U - yS : utilization limit theorem

These numbers can then be used as a guide for tuning or upgrading the system,

'. '.- and are especially useful in identifying bottlenecks. It turns out that the

equations derived from the operational approach agree with their traditional

Markovian counterparts. This helps explain the robustness of stochastic

queueing network models (they seem to have good accuracy even when their

assumptions are in doubt).

The advantages of this approach are that it can be applied to any system

that satisfies simple assumptions, calculations envolve simple formulas, and

it is easy for practitioners (systems analysts) to apply ( one does not need to

learn queueing theory). The disadvantages are that it is only applicable to

existing systems that have good monitoring capabilities, and only average

behaviors are considered (part of the beauty of classical queueing theory is

that it predicts non-intuitive results due to randomness).

F.2.2.3 Numerical Analysis

When the state of the system can be fully specified by the number and

types of customers at the various service centers, then a steady state

solutions may be obtained by solving the flow balance equations. [Note to

fully specify the state of a GI/G/1 queue time must be included in the state

description.] In general, these equations constitute an infinite set of

linear equations. Thus we must exploit a recursiveness in these equations to

obtain a closed-form solution, but this cannot always be done. However, in
many cases such as closed networks, the numbers of possible states is finite,

and hence the balance equations form a finite set of linear equations. We may

therefore apply the techniques of linear algebra to obtain a numerical

solution.

Because these equations are usually very sparse, an iterative solution

technique is more efficient than the more common elimination based techniques.i';' A simple procedure that may be used is called Guass-Seldel iteration [Coop81].

Suppose one has the following set of linear equations

Ax b.

::/.7..
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- Divide each row of A and b by aji to get Bx d. Letting B= I- L -U where

L and U are lower and upper triangular respectively, we have

(I - L -U)x = d which may be rewritten

Lx + Ux + d.

Starting with an intial guess x0 we may iterate using the following equation
to converge to the solution,

xn+1 = Lxn+l + Uxn + d.

Note, in practice a more sophisticated version such as the method of suooes-

sive overrelaxation [Coop81] is often used.
O-

F.2.2.II Approximate Analysis

Because real computing systems can be quite complex, the models of them

need to be highly flexible. Typically, when a system is thought to be too

complex to be solved by exact closed form or numerical methods, simulation is

resorted to. This however need not be the case. The use of approximate solu-

tion techniques provides a way to obtain answers of reasonable accuracy, to

very general queueing network models. The word reasonable is used rather

loosely; one of the difficulties with approximation techniques is estimating

their error bounds.

Before presenting these techniques, let us first consider some com-

plications that make the previous techniques intractable, but have been solved

by approximation techniques [ChanT8].

1) [Distributions and Disciplines] If the arrival distribution, service ,. .

distribution, and queueing discipline do not satisfy the assumptions for BCMP

networks, then it is likely that an approximation technique will be needed. A

good example of this is a network with priority disciplines. -. 4.

2) [Multiple Resource Holding] When a customer (job) needs more then one

resource simultaneously to obtain service, an approximation will be needed.

An example of this is a passive resource, a resource that does not have a ser-

vice time associated with it, but limits the population of jobs that may

utilize other devices.

3) [Blocking] In networks where finiteness of the queues is critical, such as

a packet switching network, a device (server) may be blocked, i.e., prevented

from serving jobs in its queue because a queue elsewhere in the network is

full and cannot accept any more jobs. Again an approximation technique will

. "
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be needed.

4) [Scheduler] When the delays due to waiting for a scheduler to be activated

become significant, approximations will be necessary. Schedulers are a

• - particular complication because once activated they serve many jobs in a .

relatively short time, so that it is hard to model the service time of a

scheduler.

5) [Parallelism] If a system has tasks whose subtasks can be run in parallel,

then approximation is again called for. An example of this is CPU:I/O over-

lapped processing, where the CPU and an I/O device service a job in parallel.

C' 6) [Routing] If the probability that a job completing service at device i goes

to device j is not a constant rj, but depends on the state of the system,

then an approximation will usually be needed. An important example of a type

.- of dynamic routing is load balancing (e.g., in say a pooled computer system

the scheduler would send a newly arriving job to the computer with the least

expected delay).

We will now look at two types of approximations that have been used sue-

cessfully, decomposition and diffusion. Deocomposition approximations solve

queueing network problems by breaking the network into pieces, solving these

pieces separately, and finally aggregating these subsolutions to obtain a

solution to the whole model [Chan78]. The justification for the accuracy of

this approach is first., its application to networks with product form

solutions yields exact results, and second., if one partitions the network up

into loosely coupled subnetworks then the approximation will likely be good V

since the interaction effects between the subnetworks will be minimized. The

simplest decomposition approach is called the flow equalvalent method. Here

the strategy is to partition the network into loosely coupled subnetworks,

replace each subnetwork with a flow equivalent composite queue, solve each ', -.S

subnetwork to determine the behavior of its associated composite queue, and

finally solve the new aggregate network composed of the composite queues.

Note that the partitioning may need to be applied recursively to some sub-

networks to achieve a tractable solution (i.e., continue breaking up the 0

network into smaller pieces until the pieces are small enough to be solved by

some other technique, ideally exact analysis). ..
.N

Diffusion approximations can be used to obtain approximate solutions to
7"

queues with general arrival and service time distributions (e.g., a GI/G/1
".., queue) [Klei76, Chan78]. The time dependent behavior of a queue is specified .'4' \.*
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by p(t,n;no), the probability that at time t there are n customers in the

queue given that there were no customers at time t = 0. p(t,n;n O ) may be

found by solving a set of differential equations (one for each value of n). ,

However, for general distributions this can't be done; hence an approximation

is needed. The idea is to replace the discrete variable n by the continuous

variable x > 0, where the correspondence between n and x is n = [x].

Making the substitution of x for n and the density function f(t,x;xo)

for p(t,n;no) and taking the Taylor's expansion to second order of the

differential equations, one obtains a partial differential equation, the

diffusion equation

ft(t,x;xo) -cfx(t,x;xo) + .5D2 fxx(t,x;xO) x,t > 0

. where a and D are functions of the arrival and service distributions' means

and variances [Heym82]. This equation models Brownian motion where a group of

particles is released at xO and diffuses outward because of collisions, sub-

ject to the constraint of a reflecting boundary at x = 0.

To obtain a solution to this equation we will use the distribution func-

tion, F(t,x;xo) (integral wrt x of f(t,x;xO)), rather than the density func-

tion. It can be shown that F also satisfies the diffusion equation -

Ft(t,x;xo) =-cFx(t,x;xo) + .5D xx(t,x;x O )

and has the following initial and boundary conditions

* F(0,x;x0 ) =10 if x < X0

F(tO,x0 ) = 0 t > 0.

The solution is given by [Heym82] where F(t,x;x0 ) equals

.. PHI{(x-x 0 .ot)/Dt.
5 } - exp(2cx/D2 )PHI{(-x-x0 ,Ct)/Dt.5}

where PHI is the normal distribution function. Finally, the steady state

solution is found by taking the following limit

F(x) = limtF(x,t;xo) 1 1 - exp(2cx/D2 )

where c < 0. Under heavy traffic conditions this approximation has been shown

to be good by both empirical evidence and a theorem due to Iglehart and Whitt.

In using the diffusion approximation for a network of queues, one S

generally assumes a product form solution and analyzes each queue indepen-
0°-'' %.,
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dently [Chan78]. The diffusion approximation can also be useful in conjunc-

-. tion with the flow equivalent method when individual queues have general

arrival and service distributions. Diffusion approximations are also being

applied directly to special networks. For example, Foschini uses the

diffusion approximation to solve routing problems for a system with parallel

queues [Fosc77].

F.2.2.5 Simulation -

Finally, if a model does not yield to any of the previous techniques,

then one can simulate the system to get sample solutions which can be

statistically analyzed to determine the characteristics of the system.

However, one should not go about simulation in a haphazard manner. Such

simulations can provide unreliable results. For queueing network models,

regenerative simulations have been shown to give accurate results [Chan78,

Ige78, Saue79a]. In this method confidence intervals for say mean response

time are periodically estimated, and a sequencial stopping rule is applied to

determine the run length (these problems are difficult for arbitrary

simulations). Simulations are also useful in conjunction with analytic tech-

niques (hybrid approach). For example, when using the decomposition (also

called hierarchical) approach, it may be computationally prudent to obtain

numerical solutions to the submodels, and then use simulation for the

aggregate model. Simulation is somewhat analogous to the goto statement, it

is very powerful, but should only be used in well thought out ways.

F.2.3 9mualna JNwork frokAguA.

To make queueing network modeling more convenient, packages have been

developed to solve these models [Saue79b]. Generally these packages take as

a. input a specification of the queueing network (via an interactive dialogue or - .

- a special purpose language), formulate the problem mathematically, and solve

the equations using the techniques described in this paper. Let us now ...-..

consider some of the major packages that have been developed (note, many of

these packages are available either commercially or otherwise).

The first major package to be completed was RQA by Wallace and Rosenberg

in 1966. UQA solves queueing networks with finite state spaces by formulating

the linear (global) balance equations, and solving them by numerical analysis.

0.P: The use of this approach has two principle weaknesses. First, there is a .

limit to the number of states that a system can have (a few thousand states).
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Second, for systems with a large number of states RQA can be intolerably slow.

In 1973, ASQ was completed by Keller. ASQ solves queueing networks with .

product form solutions using exact analysis. Later ASQ was extended to the

hierarchical solution of networks, and was eventually renamed CADS. The chief

limitation here is that the networks must have product form solutions.

Foster and McGehearty completed in 1974 a special purpose language QAL

and implemented a simulation solution program QSIM. QAL provided several

extensions to the networks of RQA and ASQ, such as allowing passive resources.

The primary weaknesses of QAL are its lack of non-simulation solution j
implementations, and its lack of support for representing distinct job clas- .

ses. -"

In 1975, Sauer completed APPLOMB, which solved a general class of queue-

ing networks using regenerative simulation. During this same year QNET4 was

completed by Reiser. QNET4 sovled product form networks with multiple (local)

job classes using exact analysis. In 1978, these two packages were combined

to form RESQ, which provides a fairly comprehensive solution capability and a

good user interface.

BEST/1 was completed by IBM in 1977. BEST/i was specifically designed

to solve capacity planning problems in computer systems. It solves slight

variants of product form networks using exact analysis in conjunction with

special approximations (the details are proprietary).

The final package we will consider is QSOLVE, which was completed by

Levy in 1977. QSOLVE uses an approach similar to RQA in that it uses numerical

analysis. However, it is oriented toward networks similar to, but violating

product form (e,g., it allows more general Job classes and queueing . O

disciplines).

'":" 3 MOEL

Now that we have a feel for what queueing networks are and how O

they are solved, we turn to the modeling process. This process which is more of

an art than a science, involves a careful examination of the system (real or ..

hypothetical) and abstracting out the essential features of the system

relevent to the aspect of performance being considered. Modeling studies may -0

focus on the total system or some subsystem such as the operating system, the

database system, or the communication subsystem. In modeling general comput-

.. ,
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ing systems, two approaches have been successfully used, queueing networks and

simulation. The disadvantage of simulations are their high cost, both com-

putational and developmental, and their potential unreliability resulting from

programming bugs and the difficulty of applying rigorous statistical analysis

- to their outputs [Koba78]. For all but highly detailed models, queueing

networks offer a good alternative. The reason they have not been used that

- much is that many of the advances in solving these models has come about in

the last few years, and as of yet not enough experience has been gained in

their use.

An ideal scenario for the use of modeling is the following [Saue8l]: In

the early design phases use simple queueing network models to reject -

, infeasible designs and guide design improvements. As the design nears

finalization, it should be represented by a detailed queueing network model.

At this point, if there is sufficient time and money, a detailed simulation

may be helpful. It can capture some of the details ignored in the queueing 1

network model, and if they agree it provides a partial validation of the

queueing network model. Note, a nice feature of this approach is that if

-" everything goes right, only one costly simulation will be necessary. Once the

system is operational the queueing network model should be validated by com- -

paring its performance predictions with performance measurements obtained from

the running system. If there are significant disagreements, then the results

can be used to correct the deficiencies, either in the model or the system.

Once the model is validated, it can be used to configure other installations '-

with greater confidence, and if changes in the system are needed, it can be

used in redesign and redevelopment.

F.3.1 AM ftAmaaa= XM Al"
To see how queueing network models are used, we will look at several

modeling studies. In the rest of this section we will look at some models

that have been used successfully, i.e., the models were shown to be accurate

and were found to be of use in designing, upgrading, and/or tuning computing

systems. In the next section, we will focus on the application of queueing

network models to a new area of high potential, where results just recently . .

began coming in, namely distributed processing systems.

*The first successful application of a queueing network model to a com-

puting system was done by Scherr in 1967. He applied a maohine repairman

>_,'- ... , .
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Smodel to the Compatible Time-Sharing System (CTSS) at MIT [Grah78, Munt75].

This model can be thought of as a closed queueing network with two nodes, one

representing the central system (memory, CPU, and I/O devices), and the other .

representing a collection of N terminals.

I ,
" - "I I -

N I
---. 1<.------------

I terminals I

a- ,'II ""I]'

"- -- - I I I-- -'
S>IIIIII system I-------------

In this model N jobs circulate around the network; each job is

permanently associated with a particular terminal. At the terminal node there

is no queueing so that a job goes directly to its associated terminal, and

remains there for the duration of its terminal service time (think time of its

user) which is modeled as an exponential random variable. At the central

" .:' system node the jobs queue up to obtain its services. The service time of the

central system represents the sum of the program execution time and the

unoverlapped swap time, and is also modeled as an exponential random variable.

[Note, CTSS was an early interactive system where user programs were swapped

in and out of memory, implying only one program could be in memory at a time. ] 2
" Hence there are three possible states a job can be in: 1) at its terminal,

corresponds to a user thinking, 2) in the central system queue waiting for

service, or 3) receiving service from the central system.

Clearly this is a very simple model; surely it's too simple to be an

accurate predictor of performance. Scherr compared the model's predicted mean

response time with the actual response time experienced by users.

Surprisingly, the model was amazingly accurate. In Scherr's words, the results

were "startling" considering the simple model used to predict the performance

of a "highly complex hardware-software system." This high accuracy is in part

--explained by the fact that the central system serves only one job at a time;

hence the model agreed well with the configuration of the real system. In

.• • ,
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addition, it has been shown by theoretical results that performance measures

such as average delays and throughputs are rather insensitive to service

distributions [Koba78]. 0.

In 1972, this same model was applied by Lassettre and Scherr in the
design of IBM's Time Sharing Option (TSO) with a single partition [Munt75].

The model's predicted mean response times were compared with measured response

times that were generated form script driven workloads. When at first the

model and the measurements did not agree, Lassettre and Scherr has enough con-

"- fidence in their model to claim that a system error or poor scheduling policy

was the cause. This indeed turned out to be the case; after the performance

bug was located the model gave accurate predictions [Koba78]. ;

The next major advance in the application of queueing network models to

computing systems, came in 1971 when Moore modeled the Michigan Terminal

System (MTS) as a closed Jackson network [Koba78, Munt75]. His model

explicitly represented the major resources of the system, an IBM 360/67 with a

dual processor, 1.5 megabytes of memory, 2 paging drums, and approximately 100

terminals. He found that the model could be simplified somewhat by treating

lightly used resources as a single resource.

As specified by Jackson's results the service times for each resource

were modeled as exponential random variables whose means were estimated from

"" measurements of the system in operation. Moore observed that the exponential

distribution did not fit the data he collected very well; however to predict

average values (e.g., mean response time and resource utilizations) this did

not have much effect on the accuracy of the predictions. He also used this

measured data to estimate the transition probabilities (probability of going

to resource J after completing service at resource i).

Moore measured the system over 10 to 15 minute intervals, using the data

to estimate the model parameters specified above. He then compared the model

V. predictions of mean response time and resource utilizations to those obtained

from the measured data. Again good accuracy was obtained, the predicted

values were typically within 10 percent of the measured values. Considering

the complexity of the system, a large interactive computing system, these

results are very good. In addition, Moore found that the performance was very

.J. sensitive to the load on the system, so that accurate estimation of the model '-

parameters was essential for accurate performance predictions.
q..-.-.*
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Also in 1971, Buzen used a particular type of closed Jackson network to

analyze multiprogramming systems. He called models of this type, central ser-

ver models (Koba78]. A basic central server model consists of a CPU and

%. independent secondary storage and I/O devices.

---------------------------------> 1 I/-------

'. / % ='

. . . . .> > I I l I 1 / 0 1 . . . . . . -- -- -I I " ;;O

I -------- -------
-". I I . .

- >11 CPU I ------ I I------

,I- I . . l l l I O I. . .I: : .

------------------------------------------------------------------------>11 oI ----

I I - -.

This closed network captures the basic behavior of a multiprogramming system.

The number of jobs that circulate through the system corresponds to the mul-

tiprogra-ming level. A typical job will progress as follows: It will receive .-

CPU service from which it will either be preempted or request I/O service,

upon completion of which it will again seek CPU service. This scenario will
be repeated indefinitely. Clearly a real job does not have an infinite

lifetime, but if a system has a maximum multiprogramming level and is

reasonably loaded, we can think of a completed job being replaced by a new

job. Hence the abstract notion of an infinite job is a reasonable model.

Buzen first used these models to study the throughput of batch systems

[Munt75].

Later, Buzen used a central server model for a comprehensive analysis of

the IBM Multiple Virtual Storage (MVS) operating system [Buze78]. The purpose
of this analysis was to model the resource allocation mechanisms of MVS, so

that given current or future workloads for a system, an optimal strategy for
upgrading and tuning could be determined. MVS allows an installation manager

to classify workloads (MVS allows batch workloads, time sharing workloads, and

transaction processing workloads), and provides mechanisms by which the

allocation of resources to workloads can be controlled. Additionally, within

workloads there are mechanisms by which allocations to individual jobs can be

controlled.
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For controlling the allocation of resource amoung workloads, MVS

provides two mechanisms, one which regulates access to memory, and the other

which regulates access to the central processor. To control the allocation of O

memory, the installation manager divides it up into domains (a logical region

of memory), and assigns workloads to these domains. Since each domain has a

maximum allowed multiprogramming level, this domain mechanism regulates the

allocation of jobs to memory according to their job class (workload clas-

sification). The allocation of the central processor is controlled by the

scheduling algorithm. Scheduling amoung workloads is done using a preemptive-

resume priority discipline, where jobs of higher priority preempt jobs of

lower priority which are resumed upon completion of the higher priority job.

- " Thus a workload's allocation is controlled by assigning it an appropriate

priority level. [Note, within a single priority level a round-robin (or

equivalent) scheduling algorithm is used.]

Given this first level of resource allocation control, MVS also provides -

for second level of control using mechanisms that allocate resources within

workloads. Here decisions are not made on the basis of job classification,

but rather by the operating system monitoring the behavior of jobs. There are

two mechanisms by which this control is carried out, domain migration and ;. Ai

:... exchange swapping. Domain migration is used to control the allocation of

memory. The idea here is to associate several domains with each workload and

to set the multiprogramming level lower for each successive domain. Then when

a job has consumed to many service units ( weighted sum of CPU time, IO

processing, and the memory space-time product), it is transferred to the next

domain. If the job is transferred to a domain already at its target mul-

tiprogramming level, the job will be swapped out of main memory. The second

mechanism, exchange swapping, is also used to control the allocation of

memory. The idea here is that for all jobs a dynamic memory priority is

periodically computed, and when for a given domain the priority of a job in

memory falls below one waiting to be loaded into memory, an exchange swap is

5O generated. These mechanisms keep jobs from monopolizing main memory. -

The specific system that was modeled %as an IBM 370/168 Model 3 with 7 

megabytes of memory and a total of 46 disks, dr-ans, and tape drives. The

system was processing a variety of workloads, prii.Liplely time sharing (TSO),

S batch processing, transaction processing (IMS), and tertain special purpose

subsystems. In developing the model, Buzen first sptaified the job classes;

... ,/..,..
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three classes were used for time sharing (short, medium, and long transac-

tions), one was used to represent batch processing, and a fifth was used to

represent various system overehead processes. Each of the five job classes 01
was assigned a particular domain.

Next Buzen modeled the various features of MVS, especially those dealing

with resource allocation. Domain migration was used for time sharing jobs.

Intially, all such jobs would be in the first domain, and as time progressed

S.- some would migrate to the second and third time sharing domains. Hence to

capture the steady state behavior, domain migration was modeled by assigning

the appropriate fraction of jobs to the three levels. Interactive swapping

(whenever an interactive job is waiting for terminal input and another 0

interactive job is waiting to be loaded into memory, a swap is generated) was

modeled by assuming that certain I/O devices are allocated to swapping and

setting their mean service time to the average swapping time for that

particular device. For the system that Buzen modeled both drums and slower

disks were used for swapping, the drums being used until they are full.

Demand paging is similarly modeled by setting the mean service time to the

average paging time for the particular devices used. Note, page reads and

writes were treated differently; since a job must wait for a page to be read, !i '0

this activity is considered to be part of the job's demand for I/O services,

whereas page writes are considered to be part of the system overhead. Central

processor scheduling which used a preemptive-resume priority discipline was

modeled using certain proprietary approximations (priority scheduling violates

product form conditions). Finally, exchange swapping was found to be a neg- ..

ligible factor (not used freaquently), and was therefore not included in the

model.

The complete queueing network model was formed by connecting these sub-

models together. The result was a central server model which was a

generalization of the one shown previously. Buzen used the queueing network

package BEST/i to analyze this model. BEST/i is specifically designed to

analyze central server models of this form, and allows the following features

to be modeled.

1) [Job Classes] Multiple job classes can be represented where each class has

its own service time requirements at each device. Job classes can be .. 

either open or closed.

2) [Do mina] Multiple domains can be represented where each domain has its own

.. .°
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target multiprogramming level and a separate queue. One or more job classes

can be assigned to a domain.

3) [Disciplines] All product form queueing disciplines are allowed. In

addition, the CPU queueing discipline can be preemptive-resume priority.

4) [IO Devices] IO devices each have their own service times (which include

channel and controller delays).

Buzen collected data from the system using the IBM Resource Measurement

Facility (RMF), to obtain estimates for the model's parameters. He then

comapred the model's predictions of mean response time (broken down by job

class), device utilizations, and total throughput with those measured from the

running system. Typically, the models predictions were off by less than 10

percent, and in many cases the predictions were very accurate.

*.- To help complete the picture without belaboring the point, let us

briefly consider some further applications. Queueing network models have been

used to study the performance of multiprocessing systems. Sauer and Chandy

modeled general multiprocessing systems (tightly coupled systems such as

C.mmp) to analyze the performance characteristics of such systems [Saue79a].

Specifically, they considered the effects on performance of CPU service

distributions and disciplines, the level of multiprogramming, multitasking,

and job priorities. In their analyses they compared the performance of a

uniprocessor with unit speed, to that of a multiprocessor having N processors

each with speed 1/N (for N = 2, 4, 8). Considering how cheap microprocessors

*are, one would think the multiprocessor would be far less expensive (compare 8

Intel 8086's to an IBM mainframe). Sauer and Chandy included in their model a

performance reduction factor based on the work of Fuller (he found that the

degradation in performance caused by the contension of processors for memory

was less than 10 percent for actual and proposed C.mmp configurations). 

Basically, Sauer and Chandy found that given a sufficiently high multiprogram-

ming level, that the multiprocessing systems could, even using a simple

scheduling strategy (FCFS), obtain system throughputs close to those obtained

by the uniprocessor system (in the range of 70 to 100 percent).

Finally, an interesting application of queueing network models was done

by Browne, Chandy, and four other consultants, in the development of the Air

Force's Advanced Logistics System (a large data management system) [Saue8l].

The queueing network model was composed of four submodels: one for the CPU's

(2 Cyber 70's), one for the memories both private and shared (million words)-

t + .O,'
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one for the database disks (100 disks), and one for the system/scratch disks

and tape drives (8 disks and 24 tape drives). The model predicted that the

proposed system was inadequate because of insufficient capacity in the 01

system/scratch disk subsystem and in the CPU's. Both of these predictions

were confirmed by subsequent operational experience and measurement.

*,' Amazingly, the entire modeling effort required only two months for the six

* consultants to complete.

F. 3.2 A ±lakJ IQ i 1 i a d jXSAnaALU kayma-
Currently distributed processing systems are generating much research

interest, and rightly so. They potentially provide for high system

availability, reliability, and performance,and for incremental growth and con-

figuration flexibility [Ensl78]. This flexibility provides for many degrees

of freedom in the design process. Because of this, modeling of the per-

formance of distributed processing systems becomes very important. Within the

framework of the ISO Open System Interconnection Architecture several design

decisions need to be made. Many of these decisions will have a significant

impact on the performance of a distributed system [Tane8l].

Basically, queueing network models are used in two types of studies of

distributed processing systems [Wong78]. The first type of study is directed

*- at the communication subnetwork, while the second is directed at the user-

resource network.

Performance studies of the communication subnetwork are concerned with

the delivery of messages. Performance measures of importance here are message

end-to-end delay, message throughput, and channel utilizations. Three design

areas are involved in these studies. First, the system configuration (assum-

ing a given topology) may be modeled to answer questions such as what capacity

channels to use and how many message buffers to provide. Second, the basic

control algorithms of the network layer such as routing, congestion control,

and access protocols can be modeled and analyzed to determine the best network

control strategy. Finally, at the transport layer, flow control and virtual -

circuit path selection can be modeled to address end-to-end concerns.

- As an example of such a study, let us consider a model of a message

, switched network (note: packets can be regarded as small messages) [Wong78]. .0j

The type of communication subnetwork considered in this study consists of

several intermediate processors (IMP's) connected by communication channels

, %. --
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(CIS). The intermediate processors are responsible for the usual store and

forward operations of message buffering and outgoing channel selection, while

the channels are responsible for transmitting messages form IMP to IMP.

The subnetwork is modeled as an open BCMP queueing network, where mes-

sages originating from user terminals and host computers move from source to .

destination by successively queueing for service at the two types of nodes.

One type of node represents the intermediate processors, while the other .

* represents the channels. For example, consider a piece of the queueing

network consisting of three intermediate processors (one having external .. "-

.* arrivals), and the channels connecting them.

---- ----------------------------- ------- i1 ----------------------

- >11111 IMP i-----
.-I C I ---- --- -- "

>1>111 M. P

.1-* I I ' '

-- C ..... >-l----------->--O--

------1>111C IMP----------

,?. . . .> l l - --. .
.I II"-'"

I,.:, __ . :-.:..::-..

% -- ------------------------ C -O----------------------

As a first order approximation, it is assumed that the queueing delays

and service times at the intermediate processors are negligible. This is done -.-

in Wong's model (based on Kleinrock's work [Klei76]) by letting the IMP nodes

have no queueing and zero service time (essentially these nodes carry out -

instantaneous routing) [Wong78]. The service time at each of the channels in - ..-,-.

this model is given by the message length divided by the channel capacity. In .'-

addition, the messages are classified according to their source and destina-

tion IMP's. The routing of the messages at the IMP's is done on the basis of

their class and can be either random or fixed. For the sake of tractability,-.-.

%: ....
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some further assumptions are needed: The external arrivals are Poisson, all ".-

message classes have the same exponential message length distribution, the

queues are unbounded, the discipline is FIFO, and Kleinrock's independence

assumption holds (an approximation stating that each time a message enters a

node its length is redrawn from the exponential distribution).

Kleinrock solved this model for mean end-to-end delay, and plotted end- A

to-end delay versus throughput. He found that the delay was small until the."'O.

system was operated at near full capacity (i.e., one or more channels near

- saturation), at which point the delay increased exponentially. Wong extended
- %-- ."

Kleinrock's solution by solving for the probability distribution of end-to-end

delay for each message class (this allowed variances and percentiles to be

computed). In a model validation study Kleinrock extended this model to

include the processing time of the IMP's, propagation delays, and other

features pertinent to the ARPA network. He found that the mean delay cal-

culated from the model was 73 msec., while that derived from the measurement

data was 93 msec. This is a discrepancy of 21.5 percent, not unreasonable

considering the complexity of the ARPA network.

Many extensions to this basic model have been seen in the literature.

Wong extended the model to consider the problem of buffer management using a

finite buffer model [Wong78]. Wong has also modeled end-to-end flow control.

Samari and Schneider extened Kleinrock's model by considering delays and ser-

vice times associated with the IMP's, and by including a correction factor to

-" jaccount for the nonexponential nature of the interarrival time of input to the

channels [Sama80]. They tested their model against a simulation model and .

found that they differed by less than 7 percent (note the analytic model required

far less computer time). Kurinckx and Pujolle applied a similar model (where

the nodes were IMP's) to study the end-to-end control through virtual circuits

in a computer network built following the X.25 Recommendations [Kuri8O]. They -.

were particularly interested in determining the maximum buffer overallocat-.-

for a given probability of overflow.

Turning now to studies of the user-resouroc network, we are now concer-

ned with the performance of higher level services. This corresponds to the

application layer in the Open System Architecture. Some of the problems here
9$ are concerned with which processes to run where, and where to place data.

Finding optimal (or near optimal) solutions to these problems can greatly help -
... • -".. ..
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system performance. The implementation of these solutions would be in the

system's distributed operating system and/or distributed database system.

As an example consider the problem of scheduling a set of processes on a

fully distributed processing system. An ideal system level scheduler should

* . have knowledge of the communication needs of the processes in the system and

the status of the processors in the system. A particular concern would be

that of efficiently scheduling distributed programs such as a distributed com- S

piler [Mill82], so as to minimize its communication waiting delays.

Currently, scheduling as complex as this has not been modeled. However, Chou

and Abraham modeled system level scheduling stochastically [Chou82]. They
considered the problem of scheduling a set of processes (or tasks) on a set of ;

heterogenous processors. They presented an algorithm that optimally assigns .-. :.

tasks to processors, which is based on Markov decision theory. -"'-

Finally, in an attempt to determine the overall performance of a

distributed processing system, Wong combined his communication subnetwork

model with a model of a simple user-resource component consisting of a set of

remote terminals and a single host with local terminals [Wong78]. Further

assumptions for this model are: The CPU discipline is processor sharing, and

the think time and CPU service time have rational Laplace transforms. Since

-'.* this is a BCMP qeueing network, Wong found an exact solution for the mean ..- ,

response time for local and remote users. He plotted the mean response times

versus the number of local users for various numbers of remote users. As

expected, beyond a certain threshold the mean response time increases linearly

with the number of local users.

Other than the studies of the performance of the communications sub-

network, there have been few analytic models of distributed processing

systems. In particular, more work needs to be done in modeling the higher

level services such as system level scheduling, and in deve] *,g integrated

models that take into account both the characteristics of the communication

subnetwork and the characterictics of the various resources connected to the

subnetwork (e.g., processors along with their memories, terminals, secondary

storage devices, and other peripherals).

.40.
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APPENDIX G

THE DESIGN AND EVALUATION OF A DISTRIBUTED COMPILER

. I4.

John A. Miller

Richard J. LeBlano

G.1 .IN.-."I.-
The increasing availability of distributed computing systems connected

by local area networks has produced interest in the application of distributed -
computing to software traditionally run on uniprocessors. The principal -

motivation for such application is to attempt to decrease the response time of.e ' -r

programs by partitioning them into components which can be executed in paral-

lel. This paper describes an experiment which tested the feasibility of

implementing a compiler as a distributed program. It should be noted that

this study is intended only as an initial examination of this problem. The

results are somewhat dependent on the hardware configuration on which the

s t u d y w a s c o n d u c t e d a n d o n t h e n a t u r e o f t h e ta s k p e r f o rm e d by a c o m p i l e r . "- " "- "

However, some generalized conclusions can be drawn from our experience.

To carry out this experiment, we constructed two versions of a compiler, -.

a distributed version and a single-pass version. We then compared the ..

response times of the two compilers on test programs of various sizes. It was D

our hope that the distributed version would show a significant improvement in

response time due to its utilization of parallelism inherent to the compila-

tion process.

The experiment was performed using the facilities of the computing '-_.

laboratory of the School of Information and Computer Science at Georgia Tech. 4.-The distributed system available included a network of five Prime computers, 
-

two Prime P550's and three Prime P400's. The computers are interconnected by

Ringnet [Gord79, a packet switched communication system. Ringnet is a subset P .

of PRIMENET (PRIMENET refers to all Prime's networking products) that deals

with local area communication. Ringnet is an unidirectional loop network that

consists of a node controller, a coaxial transmission cable that provides an 8

6'This paper has been submitted to Networks. .....

*46* ..- '4
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Mbits/sec effective bit rate, and interfaces to the transmission cable at each

node.

A group at the Illinois Institute of Technology have done considerable O

research related to this work. They first implemented a distributed compiler

for the language DYNAMO on their network computer, known as TECHNEC [Huen77].

TECHNEC is a network of several LSI-11 computers that work together to execute

a single job at a time. More recently they have reported work on a .

distributed Pascal compiler for TECHNEC [El-D791. Their work has included

considerations of automatic partitioning of object code as well as attempts to

distribute the executions of a compiler. Our work is related to the latter of

these efforts. This report goes beyond their publications by presenting a O

comparison of the performance of distributed and standard compilers.

0.2.1 M&

The programming language used for this study was a subset of Pascal,

called Jigsaw, used in compiler writing courses at Georgia Tech. This

language was chosen because it is simple enough to keep the compiler develop-

ment time as short as possible, yet it contains enough features to present ,.S

"typical" compilation problems. The features of Jigsaw include: if and while

control statements, integer, real, array, and record data types, and

parameterized procedures.

G.*2.*2 CoQmonents. .sr lha CompiJlar
The process of partitioning the problem is of paramount importance in

implementing a distributed program. Ideally, the component parts of a

distributed program should each implement a single step of the task being per-

formed. More importantly, the interaction between the components should be

simple and infrequent (relatively speaking). Such a partitioning will result

in components which can easily be connected as a pipeline. The Jigsaw com-

piler was partitioned into the following components (all written in Pascal):

a lexical analyzer, a syntactic analyzer, and a semantic analyzer/code

generator. A separate code generator would usually be needed, but the target
code (for a hypothetical machine) was sufficiently similar to intermediate '

code (e.g., quadruples) to make a separate code generation step unnecessary.

These components work together in series to decompose source statements,

analyze their contents and, finally, compose the target or object code. The

--.-- %--%
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process is analogous to an assembly line, where the product goes through 2
different phases on its way to completion.
G.2.2.1 Lexical Analyzer

The lexical analyzer or scanner is the first phase of the compilation

.. process. Its function is to read lines from the source code file and break

them up into their component symbols, called tokens. The tokens of a program-

ming language are analogous to the words and punctuation marks of English

S.., text. The extraction of tokens from the input line is accomplished by using a

finite state machine that does pattern matching on the characters in the line.

When it finds a valid pattern it outputs a number that specifies the class to

which the token belongs (e.g. identifiers make up a class), and, where

additional semantic information is necessary, it outputs the token string

itself. For example, when the token '123' is found, the lexical analyzer out-

puts the class number for integer constants and the string '123', so that the

constant value may be computed later. Thus the lexical analyzer performs the

mapping shown in Figure 1(a)...

The lexical analysis component was constructed using a lexical analyzer

generator, a relatively common compiler development tool available on our com- .

puting system. This tool consists of a table-driven lexical analyzer and a

lexical table generator. To use this tool, one specifies the tokens of the

language as regular expressions. The generator program reads this information

and produces a table that is used by the lexical analyzer to make decisions in

the pattern matching process. This standard lexical analyzer, which uses the

generated table, is easily incorporated in a compiler.

0.2.2.2 Syntactic Analyzer

The second phase of the compilation process is performed by the syntac-

tic analyzer or parser. It takes the token numbers generated by the lexical

analyzer and collects them together to form phrases that are specified by

grammatical rules. This grouping of tokens into phrases is accomplished by a

pushdown-store machine. When it determines that a string of tokens satisfies
a grammatical rule, it replaces that string with a nonterminal symbol that

stands for a string of that type. In addition, for certain rules, actions
must be carried out to manipulate semantic information or generate some form

of code. These actions are specified by "action numbers" attached to these

4. rules in the grammatical specification. Thus the syntactic analyzer performs

5i-*.** *5J'.'
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the mapping illustrated by Figure 1(b).

We made use of another common tool, a LALR(1) parser generator, to

construct the syntactic analysis component. It consists of a table-driven

parser and a parsing table generator. To use the generator, one simply writes

a specification of the grammar for the language in Backus-Naur Form (BNF).
-5 -... .. -

The generator will produce tables from this information which will be used by

the parser to make parsing decisions.

G.2.2.3 Semantic Analyzer .-

final In this implementation, the semantic analyzer constitutes the third and --.

final phase of the compilation process. Its basic function is to implement

the "semantics" (meaning) of the program. It is driven by the action numbers .

generated by the parser. These semantic action numbers have routines

associated with them that manipulate information on a semantic stack and/or

generate some form of code (which in this compiler is the target code).

Some of the semantic actions require information from the lexical

analyzer. For example, one semantic action specifies that an identifier

should be pushed onto the semantic stack. The identifier, in the form of a
token string, is obtained directly from the lexical analyzer. Thus the

semantic analyzer's task is described by the diagram in Figure I(c).

V' No tools were available to automatically construct this component. Thus

the semantic analyzer was entirely hand-coded. It consists of action routines

to carry out semantic actions, symbol table routines to store attributes of

identifiers and code generation routines to output the simple target code. .. i..is

G.2-3 Mba Distributed """iJ r

Having defined these basic components, we next consider the task of put-

ting them together to form a complete compiler. Because of the high degree of

modularity and the simple interfaces, an obvious way to have the components

work together is to let them be separate processes that communicate with each

other by sending messages. This approach was adopted to form a distributed

Jigsaw compiler. The communication links for this compiler are those that are

formed by fitting the previous functional mapping diagrams together. Figure

1(d) illustrates the final structure.

Notice that the components fit together in a pipeline fashion, where the

input goes through successive transformations on its way to the finished

%'.1 , .1 .1
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product, namely the target code. Thus the only interdependency is that

* processes must be fed information from their predecessors. This enables the

processes to be implemented efficiently as communicating distributed proces- .01

ses, where each process runs on a separate computer in the aforementioned

local area network.

Ideally, we would like a system where each component could continue run-

fling as long as it had input to process. For instance, the lexical analyzer

could run continuously and keep sending out token numbers and strings until it

encountered the end of the input file. Its output would be accumulated in the

message queues at the syntactic and semantic analyzers. However, since the

message queues are finite, if the lexical analyzer runs faster than the 
other W.

two components it will eventually be forced to wait for them, thus destroying

the valuable inherent parallelism. Therefore, steps need to be taken to tune

or optimize the performance of these cooperating processes. -,-"

There are three basic factors to be taken into consideration. First,

the speeds of components need to be balanced. Assume that the total amount of

time required by the components, is tl, t2 , and t3 respectively, where T : t-

+ t+ t t 3 equals the total compilation time for a serial implementation. Then

the maximum possible speed up factor would be

T
"" fs = .vA

m x t ,t2,t
3 }mma

Clearly, the best we can do is have tI = t2 = t3 , in which case fs 3, that

is, the parallel version would potentially be 3 times faster than the serial

version. Notice that this factor needs to be considered in the initial

partitioning of the problem. A compromise may be required between the goal of • -

balancing and that of conceptual separability or modularity. In the case of

our compiler, we discovered that there was little conflict between these

goals.

The second factor to be considered is the size of what we called the

"intervals of independence". These intervals refer to the amount of time the

component processes can run independently (that is, without sending or receiv-

ing messages). They are important because communication and waiting delays

are avoided during these intervals. This argues for us making the intervals

large. However, making the intervals too large, makes the time to fill the

pipeline significant, and may result in components having to wait too long for

I%
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their input. Basically, we are trying to optimize between two separate types

of serialization. The first type of serialization is illustrated by the time

diagram for a single-pass compiler in Figure 2(a), where dtl, dt2, and dt3 are

the single step processing times for the lexical, syntactic, and semantic .-

analyzers, respectively. The second type is illustrated by a hypothetical

multi-pass compiler that communicates using memory rather than secondary

storage. The time diagram for it would look like the one in Figure 2(b).

The ideal design of a distributed compiler would result in overlapping

execution of the three components, as diagrammed in Figure 2(c). If the

intervals of independence are too small, then the behavior will approach that

of a single pass compiler, where for example, the syntactic analyzer would . 6

wait for a message from the lexical analyzer, quickly do its processing, send

results to the semantic analyzer (waiting if its queue is full), and finally

go back to waiting for a message from the lexical analyzer. Making the inter-

vals of independence larger provides the advantage that more processing will

be done within each interval relative to the amount of time spent waiting and .. ...

transmitting messages. However, making the intervals too large will result

in, say, the syntactic analyzer having to wait too long to get information

from the lexical analyzer before it could proceed. Clearly the optimal solu-

tion depends on the characteristics of the network, the computers, the operat-

ing system and the individual processes themselves.

A simple way to control the size of the intervals is to adjust the

amount of information sent ifi each message. For example, the lexical analyzer

sends token numbers to the syntactic analyzer and token strings to the

semantic analyzer. The lexical analyzer saves these numbers and strings in

internal buffers. Only when it has filled one of the buffers, does it send a

message (the contents of the full buffer) to one of the other processes. This

buffering mechanism enables the intervals of independence to be increased and'. .. ..- '
the number of individual messages passed to be reduced.

The third and final factor to be considered is that of balancing the

.. S- flow of messages between the processes. That is, for each communication link,

we want the number of messages that are sent to be approximately equal. As an

example, again consider the lexical analyzer. Observation shows it sends more
than twice as many token numbers as it does token strings. Suppose it has

just filled its buffers and sent them out.

.
o0,
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N: token number buffer n n2 n3 n4 n5 n6-

S: token string buffer s1 s2 s3

The syntactic analyzer will receive the N buffer, process it and eventually O

send out a semantic action number buffer.
A: action number buffer a1  a2 a3 a4 a5 a6

Now, if the token numbers that correspond to the token strings in S were in N,

then action numbers that tell what to do with the strings in S will be in A. "

Thus balancing will result in smooth information flow where waiting times will

be small.

* As an example of what can happen when the flows are not balanced, assume

the message queue size equals 2 (as is the case on our system), and that the N

buffer holds 8 elements and the S buffer holds 1. After about 7 tokens have"5'p .--- .--

been read, 3 token strings will have been sent. However, since no token num-

bers have been sent, the token strings will not have been received, so that

the lexical analyzer will be blocked indefinitely waiting to send the third

token string. Thus, as this extreme case illustrates, unbalanced message

flows can even result in deadlock.

Having already taken care of the first factor, we were left with the

task of choosing the buffer sizes to optimize the second and third factors.

We first attacked the third factor by setting the S buffer size at 10 token

strings, and testing the response times for various N and A buffer sizes. For

test programs of 600 lines of code, the responses for N,A = 20 + 2 were 1:02 ",""

minutes and the response increased slowly as N,A moved outside this range.

Thus the optimal ratio of buffer sizes, N:S:A, was about 2:1:2. We then ."

attacked the second factor by holding this ratio fixed and varying the

* magnitude of the buffers. For test programs of 600 lines of code, the

response times and processor times are reported in Table 1.

to, Since our network limited messages to at most 256 bytes, we were unable .

to test larger buffers (20 token strings requires 240 bytes). The data in the

table clearly show that increasing the size of the buffers when the buffers ,

are small provides dramatic improvements. However, once the bufferh sizes

(N,S,A) reach (12,6,12), the response curve becomes rather flat and remains so
<. ...-'4*"

through the rest of the range tested. We thus picked the minimum point of

this curve as the values to set the buffer sizes for the distributed compiler, -

that is we let
A%'4

•.., .
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SN hold 20 token numbers (2 bytes/number),
S hold 10 token strings (12 bytes/string),
A hold 20 action numbers (2 bytes/number).

G.2.4 :iae-asVeso
A single-pass version of the compiler was also constructed to be used as

. a standard of comparison in evaluating the performance of the distributed com- 11
piler. It uses the exact same components as the distributed version.

However, instead of having them communicate by sending messages, they com- .

municate using procedure invocation, with the syntactic ana2yzer acting as the

driver. When it needs a token it calls the lexical analyzer and similarly

when it has determined that a semantic action needs to be performed it calls

the semantic analyzer. Thus the single-pass version is implemented as a 6

sequential process that runs on a single computer.

G.3 = XERMN

The point of this case study was to test the feasibility of distributed

compilation. As described above, distributed and single-pass versions of the

same compiler were constructed, differing only in global control structures.

Thus the only factor which could account for any performance differences is

the method of communication between the components and the parallelism it

allows. The distributed version communicates by sending messages; the single-

pass version communicates by procedure invocation and parameter passing.

Therefore, if we consider the total amount of processing time consumed by the

f ._ compilers in compiling the same program, it seems likely that the distributed

.' version would require a little more time, as message passing requires more

overhead than procedure invocation. However, this factor will be unimportant

if significant parallelism can be achieved in the distributed version, thereby

substantially reducing total response time. Thus we will compare the response

time of the distributed version to that of the single pass version.

For this experiment three Prime computers in our local area network were

used, two Prime P550's, systems A and B, and one Prime P400, system C. These

systems are compatible with respect to machine instructions and operating

system, but system C is a little slower. The components of the distributed

compiler were placed as follows: lexical analyzer on system A, syntactic

analyzer on system B, and the semantic analyzer on system C. The single-pass

compiler was run on system A.

ft,.
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% Specifically, the following tests were performed. First the two corn-

pilers were tested under completely unloaded conditions; that is, the only

other load on the system was due to the operating system. These conditions

are of interest as they indicate the maximum possible benefit that can be

achieved by distributing a compiler. For this case, the two compilers were

run on Jigsaw test programs ranging in size from 25 to 1200 lines of code.

For each program the response time and processor (cpu) times used were recor- .

ded. The results are shown in Table 1 and Figure 1. All times in the tables

are in units of seconds, except for the longer response times, which are

expressed as 'minutes:seconds'.

Secondly, the compilers were tested under moderately loaded conditions,

where approximately five people were using each system. Although, this does

not constitute a well controlled experiment, it does give an indication of the

trend in the response times as the load factor is increased. The results for

this case are shown in Table 2.

G.A ITRPRETATION -'---'

The data reported in Table 1 and Figure 1 clearly indicate that '
distributed compilers can achieve significant improvements in response time 1- ,W

*over traditional single-pass compilers. Indeed, for programs of more than 100

lines of code the distributed compiler was 2 to 2.5 times faster than the

single-pass compiler. For example, for a program of 1200 lines, the single-

pass compiler took 4 1/2 minutes, while the distributed compiler took only 2

minutes. This ratio obviously would have a considerable impact when compiling

even larger programs. For programs smaller than 100 lines, we see that use of --

the distributed version is still advantageous, although less overwhelmingly.

This loss of advantage can be accounted for by the fact that the distributed

version has fixed overhead involved in setting up the virtual circuits and

filling the pipeline (i.e., the syntactic analyzer cannot start until the

lexical analyzer has filled a buffer with token numbers).

The message buffer sizes, used to control the frequency of interactions

between components of the program, turned out to be a very important per-

formance factor. Without buffering, the best speed-up factor obtained was

about 1.4 (as opposed to 2.5 with the reported buffer sizes). As buffering

was introduced and the sizes increased, performance at first improved rather "..

dramatically. The sizes used reflect a leveling off point in a graph of per-

• % ° '
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formance versus buffer sizes.

Let us now examine the relationship between the performance of the

individual components and that of the distributed compiler. These components

are roughly equal in the processing time that they consume, with the syntactic

analyzer consuming the largest portion. Since tne maximum potential speed-up .-
factor f"
factor s is limited by the slowest component, it is very important in

distributed programs to concentrate performance f.mprovement efforts on such "

components. Note that the effects of improving the slowest component are much .' '

more dramatic with distributed programs. Speeding up the parser in our corn- ... 1 -

piler by 15% would probably improve the performance of the distributed version

by close to 15%, but it would improve the single-pass version by less than

half of that factor. -

To determine the amount of processing time needed to distribute the com-

piler, we can compare the processing time used by the single-pass version with

that of the sum of the processing times of the distributed components. The

-N difference between the sum column in Table 1 and the processor time column

seems to be made up of two components: a fixed overhead of about 3 seconds,

and a proportionate increase of about 5%. The fixed overhead results from the

time necessary to initially set up the virtual circuits, and the proportionate

increase is caused by the replacement of procedure invocation with message

passing. Compared with the positive effects of parallelism, these negative

effects are not significant. "-

"Ia Finally, we consider the data from the tests where the system was

F. moderately loaded. Again the distributed version was faster, but the speed-up

factor was much smaller, about 1.5. Thus it is apparent that the distributed

compiler was more adversely affected by the load on the system than the

single-pass version. This result is expected, since the speed of the

distributed version depends on the smooth flow of information between the
processes and loading the system increases the competition for time slices,

thereby increasing the probability that a message will be sent to a process in '
a wait state. Hence, loading the system has the potential to increase effec-

tive message transmission time and thus slow down the individual components.

A possible remedy for this problem would be to have a sophisticated

distributed operating system to oversee the operation of the network. If such -5
an operating system had knowledge of the running characteristics and the com- "

% .. -L.. -. -. -,: * ... •........'-..,
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munication needs of the processes in the network, then it could possibly 9
schedule processes so as to enhance the smooth flow of information.

!- ".5 CONCLUSION

'""" The significance of this study is not merely that it demonstrates

potential benefits of distributed compilation, but rather that it suggests

that at least some class of programs traditionally executed sequentially can

be successfully partitioned as distributed programs. We believe this class

includes not only compilers, but any program which operates as a sequence of

transformations on its input to produce some output. Such programs map nicely

to distributed computing systems which provide a pool of assignable, general- r .W

purpose processors. In such a system, computers could be allocated to the

component processes of the compiler (or other program) for the entire length

of the compilation, thus achieving the ideal conditions of the unloaded tests.-V .

It should, therefore, be possible to achieve speed-up factors of the magnitude *

we observed.

It should be noted that it was quite easy to transform a traditionally-

structured compiler into a distributed one. Using message passing as the

means for communication between components requires only thoughtful design of

component interfaces. No complex synchronization protocols need be devised.

The message passing corresponds to simple procedure invocations in the

traditional program. Again, this should hold for a broader class of programs.

We currently observe the development of systems which commonly provide

conditions similar to those of the unloaded tests. With personal computers

and small business systems becoming inexpensive, networks of them are "

proliferating. In such networks, the use of human resources rather than the ,

use of cheap processors is optimized, so processors are, on the average, ligh-

tly loaded and thus are available for use by distributed programs. Another

reason why such a system is a good candidate is that the processors are not

very fast, so that use of parallelism is particularly desirable. Furthermore,

- ,* the memory capacity on these systems may be limited, making a distributed

program advantageous, since its component processes are naturally smaller than

the entire program would be if it were monolithic.

Finally, we must consider the system dependencies of our results. The

success of the distributed compiler depends on message delay times being

S%. % % .• .#'C "+.'..." ," ." ,"! -".,"." ' - -•-" ". ""•"", ,"""". . """"". - . """"".. .,""--.j."" ,. , "''+',"".
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small. Its loss of advantage as a load appeared on the system is direct

evidence of this dependency. Thus our results are most applicable to high-

bandwidth local area networks which can provide the necessary speed of message

delivery. The introduction of the concept of buffering messages within

program components as a tuning technique makes our results less dependent on

the more detailed system characteristics. With proper use of buffer sizes, it

is likely that our results could be matched on a variety of distributed

systems connected by local-area networks.

G.6 TALB= ANM FImG'

TABLE I

BUFFER SIZE TEST RESULTS

BUFFER SIZES RESPONSE SCANNER PARSER SDIANTIC
N S A TIME CPU TIME CPU TIME CPU TIME

(min:seo) (sao) (sea) (sea)

1 1 1 2:23 57 82 47
4 2 4 1:36 46 58 35
8 4 8 1:13 42 55 32
12 6 12 1:06 42 53 31
16 8 16 1:03 41 53 31
20 10 20 1:02 40 52 31
24 12 24 1:03 40 52 31
28 14 28 1:03 40 52 31
32 16 32 1:04 39 51 31
36 18 36 1:04 39 51 31
10 20 10 1:04 39 51 31

S.'. -?
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TABLE 2

TIMING DATA FOR RUNS ON UNLOADED SYSTEM

SINGLE PASS COMPILER DISTRIBUTED COMPILER
PROGRAM RESPONSE PROCESSOR RESPONSE SCANNER PARSER SEMANTIC TOTAL CPU

SIZE TIME CPU TIME TIME CPU TIME CPU TIME CPU TIME TIME
(lines) (min:see) (see) (min:see) (seo) (see) (see) (sea)

25 7 5 5 2 3 3 8 '*j
50 13 9 8 3 5 5 13
100 25 20 13 7 10 8 25
200 17 39 22 114 19 12 145
300 1:08 58 32 20 26 17 63
100 1:31 78 142 27 35 22 8J.
500 1:54I 96 52 34 144 26 101 "
600 2:17 115 1:02 40 52 31 123

' 700 2:39 135 1:12 47 61 36 1441
800 2:59 154 1:21 53 70 40 163
900 3:19 172 1:30 60 77 415 182

1000 3:42 192 1:40 67 86 49 202
1100 4:06 212 1:50 73 94 53 220
1200 '1:30 230 1:59 79 102 58 239

TABLE 3

TIMING DATA FOR RUNS ON LOADED SYSTEM

SINGLE PASS COMPILER DISTRIBUTED COMPILER
PROGRAM RESPONSE PROCESSOR RESPONSE SCANNER PARSER SEMANTIC TOTAL CPU

SIZE TIME CPU TIME TIME CPU TIME CPU TIME CPU TIME TIME .
(lines) (.in:sea) (see) (Wni:seo) (sea) (sea) (see) (see)

25 11 5 10 2 5 5 12
50 17 9 16 14 6 6 16
100 35 20 28 8 12 8 28
200 1:10 40 19 114 20 14 148
300 1:140 59 1:08 20 28 19 67
400 2:27 79 1:14 28 11 24 93
500 3:04 98 2:09 35 50 30 115

ON7. ,4.%-.
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FIGURE 1

COMPILER STRUCTURE

I Lexical I > taken numbers
characters -> I Analyzer I > token strings

(A) LEXICAL ANALYZER TRAESPORMiTION ::~-~:

I syntax
* token numbers -> I analyzer I- >action numbers

(B) SYNTAX ANALYZER TRANSFORMATION

action numbers - > semantic I
token strings -> Ianalyzer I > instructions

(C) SEMANTIC ANALYZER TRANSFORMATIOK

source Ilexical I tokens I syntactic I actions I semantic target I
- 1 analyzer 1- > I analyzer l-> I analyer 1-->

I tokens stringsI

(D) OVERALL COMPILER STRUCTURE

'.40'
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FIGURE 2 a

TIMING DIAGRAMS

lexical I-I I--I
d 1  dt1 dtl

syntactic s---e I--- • -.
dt2  dt2 dt2

semantic I-=- I -= I I---
dt.3 dt3  dt3

time ---w-

(A) SINGLE PASS COMPILER

lexical I--I--I••• I-I
dtl dtl dtj

I:.I. syntactic I----I.••I
dt2 dt2  dt2  ""*

semantio
dt3 dt3  dt3

time

(B) MULTI-PASS COMPILER

lexical--- ,... ,--
dtj dtI  dt.

syntactic I ... --...
dt2  dt2 dt2

semantio
dt3  dt3  dt3

time

(C) IDEAL DISTRIBUTED COMPILER t~ e .- .- .._-

-e 4P
% "j
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APPEWDIX H

Architecture for a Global Operating System

M. S. McKendry, J. E. Allchin, and W. C. Thibault

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, Georgia 30332

ABSTRACT
The concept of a global operating system embraces

* Global operating systems are suited to distributed, these requirements [Jens82] [Lamp81]. In a global
local-area network environments. A decentralized operating system, all resources are managed and

.- global operating system can manage all resources alloatedglobally. The physical locality of a resource -
globally, relying on functional requirements for whether local or remote, for example - is not inherently
resource allocations, rather than the relative physical a part of the decision process. Decisions can be made
locations of the resource allocation mechanism and solely on the basis of cost factors and logical
the resource itself. Among the advantages of global constraints, rather than physical locality. For
operating systems are the ability to use idle resources example, assignment of a processor to a process might
and to control the environment as a single cohesive be performed on the basis of code file location, expected m-e,
entity. This paper introduces an architectural 1/0, expected CPU utilization, and current processor
approach to supporting decentralized global operating and network loadings. ,p
systems. The approach addresses the problem of
managing distributed data by incorporating

- specialized data management facilities in the kernel. Transparency appears to be a key quality in the
-lThis data management is especially useful to the architecture of a decentralized global operating .-
operating system itself. A capability-based access system. This has two main aspects:
scheme provides flexible control of resources and
autonomy. The approach is being utilized in the
Clouds operating system project at Georgia Tech. Resource Access: Boundaries between "

machines should be
transparent during access to
resources if desired. This is
provided by many existing
inter-process communication '

.. Introduction mechanisms (e.g., (Rash8l]).

wtiaorazto Decision Apparatus: The relative physical
Increasingly, the computers withinlocations of a policy apparatus
consist of a heterogeneous group of machines linked by and the resources it controls

."'.r high speed (yet relatively inexpensive) local area
networks. Mainframes, office stations, scientific should be transparent to the
workstations, personal machines, and even real-time policy apparatus. To do this

_. controllers may participate in this internetwork of efficiently may also require
machines. In many such environments, it is desirable that data describing resources

.r that users view the entire decentralized resource pool be accessible independently of
as a single computing resource. Users could then be its physical location.
shielded from multiple user interfaces and relieved
from having to decide how best to accomplish objectives
using the available resources. Given a system supporting transparency in its access to

resources and its decision apparatus, construction of
arbitrary groupings of resources is simplified, as is

% In effect, we want to hide the decentralization of the allocation of resources on a global basis. These
%. . . resources from users, so they do not have to be qualities are not necessarily easy to achieve, however.
r%. concerned with which particular resources are used to or example, for a decision apparatus to operate

%- accomplish their objectives. Furthermore, we need to independently of the resources it controls, it may need
.01 ,% group resources for the purposes of autonomy and the ability to 'back-up" if a remote processor fails after

protection, whether the resources in question are files, Thisw-
machines, or logical services. For a completely general work was supported in part under contracts from the Office

.P4 facility, support for arbitrary (possibly intersecting) of Naval Research, N00014-79-C-873 and the USAF Rome Air
,.-, gu g fDevelopment Center, F30602 81 -C-0249.-. grou pings of resources is needed.

*This paper is to appear in EINF0COM la, San Diego California, April 1983.
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a decision is made. Furthermore, decentralization services that are common to conventional systems and
requires that decisions be made on the basis of services that are peculiar to distributed systems;. Man'
heuristics or probabilities, using out-of-date or of the requirements of application programs for thee .
inconsistent data [JensS1l. services are shared by the operating system itself,

which attempts to provide reliable service despite the
possibility of machine and network failures.

In this paper we introduce a structural approach, or
architecture, for a system designed to support
decentralized global operating systems. In this Our final goal is to provide tunable autonomy--
approach, which is still being refined by the Clouds dynamically configurable domains of resource control.
project at Georgia Tech, we take the view that kernels A tunably autonomous system could provide a variey .-. '
provided to support the operating system on each of resource allocation schemes, varying from highl.
machine should provide the uniformity and autonomous systems, to the equivalent of tightly-
transparency required. Using the object model (data coupled multiprocessing, where decisions affecting one
abstraction) as a basis, we intend to provide a machine can be made by any other machine. Tunable
sophisticated database management system within autonomy facilitates construction of logical resource
kernels, but leave the specific details of aspects such as groupings at multiple levels. For example office.
ivnhronization, recovery, and atomicity to the department, division, company, and inter-company
designers of the operating system (the client system) levels might be established, with differing autonomy
that utilizes the kernels. The kernels provide and sharing constraints at each level.
mechanisms to implement these requirements without
specifying policy of how the mechanisms should be 3. Requirements
used.

The paper discusses the goals (Section 2), requirements %
(Section 3), and architectural concepts (Section 4) for Two issues, data management and resource .
this approach. The approach is being implemented in management, stand out as fundamental to the Clouds
the Clouds operating system, which will run as a architecture. Only the mechanism for resource
native operating system on all participating machines. management has to be provided by the architecture, P D-
The environment assumed is a group of machines but requirements for effective and efficient resource
connected via an internetwork of high-speed policy must be given consideration.
(inexpensive) local area networks. For practical
reasons, Clouds is being implemented initially on 3.1 Data Management
homo geneous machines: the Three Rivers Perq -r
"3RCC82). The Perq is a scientific workstation of

minicomputer capacity. We are using 10 Mbisec Data management is a ubiquitous problem in computer ,
Ethernet technology for the ocal area networks, programs. The problem is particularly severe in

distributed systems. Conventional operating systems ' "

2. Goals contain a plethora of structures represeating system
state. A global operating system must do the same,
and must also deal with additional issues including

The environment we are considering has been increased concurrency, partial configurations, and
characterized as a Fully Distributed Processing System failures and associated recovery. Each nod: must be
(FDPS). According to Enslow (Ensl78], an FDPS able to access both local and remote data. Considerable
exhibits the characteristics of a multiplicity of research has been expended studying general problems .-..
resources, physical distribution, unity of control, encountered in managing distributed data, but little
network (location) transparency, and component attention has been paid to problems peculiar to '.''a autonomy. The primarty goal of the architecture is to decentralized real-time systems. As a consequence, .-. "x

support a reliable, unified computing environment so special solutions tend to be reinvented for each
that these characteristics can be fully realized. In this application system (e.g., [Birr81]) and for each part of ..-

sense, the architecture could form the basis of a the operating system.
distributed timesharing system. While such
constraints as "one user per workstation" might hold at
various times (making some decisions trivial), the Conventional database research usually assumes an
system can take responsibility for all selection and application environment in which data consistency
assignment of resources to users. Note that an (defined through serializability) is of prime
architecture can form a basis for many different importance. However, serializability is applicable
systems, not just the traditional "general purpose" mainly 'when independent activities compete for
systems. Systems supported might include distributed resources--it is not suited to cooperation between
process control, for example. processes, such as is achieved through message-based 'i

interprocess communication. Thus it is necessary to ..- i
deal with an orthogonal structure of atomic actions % ...

Two secondary goals are apparent. Firstly, as in which can be the units of recovery and concurrency :-.',.
conventional operating systems, the architecture Further, one of the attractions of serializability is its .'.
should facilitate high resource utilization within simplicity in the absence of semantic information
performance constraints such as response time or total concerning data accesses. This simplicity is obtained ,-- .

cost. Secondly, it should help users to access or create at the cost of concurrency though, and in an operating k. -. 1.
* . , * .- '%

;Y- .1.. ..,,
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system considerable semantic information is available
concerning both the accesses and the operations on the network
data stored. This information can be exploited to
improve concurrency, and thus availability and
performance. serial

user r .eb

-. Due to the scope of distributed data management
-. requirements, data management takes a prominent

place in our architectural approach. Distributed data
management can be made quite sophisticated.
supporting failure atomicity, consistency conditions :..--
including (but not limited to) serializability, creation '

- and location of data objects, synchronization of access.-
*: to data, replication of data, and invocation of

operations on data. It can also provide a basis for
system synchronization [Allc83].

3.2 Resource Allocation
program.

1 Consideration of resource allocation requirements is
critical to the success of a global operating system
architecture. Ideally, an operating system should take random access
complete responsibility for the allocation of resources fit C
to a user, if the user so desires. The architecture must
provide facilities to support this allocation control.

Figure 1.

Consider the example depicted in Figure 1. A user ..
directly connected to machine A, wishes to run a
program p. which requires serial access to file b ability to assign them effectively will be limited by out-
currently on machine B, and random access to file c on of-date and incomplete information. Machine states
machine C. The operating system must determine change rapidly, so a perfectly consistent description of ".-
which machine should provide the computational the state of an entire system cannot be achieved
resources necessary to run p, and whether any files without paying a high performance penalty. As a
should be relocated beforehand. Factors involved result, reaching a decision involves a more heuristic or
include user-specified, constraints (e.g., 'fast', or probabilistic approach than in a conventional, single
'cheap'), optimization of particular resources (e.g., processor system. More historic data to assist
device channels, processor time, network bandwidth), prediction can help, though; a system could keep
current loads, and interactions with other programs, extensive statistics of past activity. For example, if file
The program p may run on machine A, but unlike c in Figure 1 is known to be small, and program p
many conventional distributed operating systems (e.g., typically makes extensive random access to c, the
[Rede80]), this is determined heuristically at the time operating system might decide to either relocate c to
of request; it is not a default. Thus, we are advocating machine A, or to run p on machine C.
a more "intelligent" approach to resource allocation.

A second concern of the decision process pertains to
3.2.1 Tunable Autonomy decisions that have been made, but cannot be

implemented. To a limited extent, this can be avoided
The term tunable autonomy characterizes the ability by preclaiming resources, but the problems or failures
to construct arbitrary logical groupings of resources for cannot be avoided. If a machine fails, it may be
the purposes of management. A single group of impossible to implement a resource policy decision. In
resources, or resource pool might contain one or this circumstance, the policy apparatus must try again,
many resources, may intersect or contain other basing the next attempted decision on more recentresource pools, and can extend across arbitrary information.
machines. Once a resource pool is defined, decisions
concerning the resources within it can be made by any 4. Architectural Directions
processor (or program) granted control over that pool,
regardless of physical location. Within this
framework, allowing each physical machine to be In many operating systems for distributed
autonomous is a constraining case, buy not the only environments, a kernel provides primitive operations
possible case. for inter-process communication ([PC) via messages

,- .. (e.g., (Rash8l]). We intend to take a radically different
3.3.2 The Decision Process approach, however, adopting the dual structure

[Laue79]. The architecture supports processes,
(passive) objects, and invocation of operations on k-

While a decentralized global operating system should objects. Actions (groupings of invocations) provide a
have considerable freedom to assignits bis for reliability. The primitive facilities provided

%. % %
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Figure 2. Conceptual Vic,v of the Architecture

by the architecture use a variety of remote procedure Kernels run processes and maintain objects. However,
call semantics which vary in dimensions such as be-ause this is at the instigation of higher level
reliability and asynchrony [Spec82]. A section of the software, conventional message-based inter-process
kernel, called the object management system (OMS), communication is considered to be part of the client.
implements calls on objects. Access from processes to system, as is the resource allocation policy apparatus. s

objects is via capabilities, which are protected system These characteristics are, in fact, highly desirable
names managed by the kernel. Capabilities can be features, because they allow client-specifiable inter-
passed as parameters when operations are invoked; process communication, and ermit a high degree of A.".

they can also be returned in a fashion similar to flexibility in resource policy. method of using objects ..
function values. to implement interprocess communication via

messages is shown in Figure 3. "- 1

The kernel will provide the lower levels of a functional
hierarchy. At the lowest level is the hardware, which . D.a..6
we consider to include access to a local area network. 4.1 Data Management
At the level above the hardware is the rimitive inter-
machine communication used by the individual kernels The object management system consists of two primary
to communicate with one another and to maintain the components: objects and actions; both are user.'
object management system. Data and process definable [Allc82] [Allc83]. Objects are passive entities
management mechanisms then complete the kernel (modified abstract data types) which are accessible
and the architecture. Thus, the combination of services only through interface procedures that define
provided by individual kernels implements the operations on the objects. Actions are ordered %
architecture for the complete system. Above the collections of operations on objects which require "
kernels are client levels to provide policy for the certain properties (e.g., failure atomicity) to hold
architecture. Finally, user processes implement throughout the life of the action. Both object recovery
applications. A pictorial representation of the and synchronization between actions are controllable
architecture is shown in Figure 2. by the object itself (i.e., programmed within the object).
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Thus, for example, weaker forms of consistency are
allowed, depending on the semantics of an object.
Actions can be carried out by single processes or sender port object recipient '

% cooperating processes. process (p) process

An extended Pascal language allows object classes to
be defined, and the object management system
supports objects at runtime. Once created via object
classes, object instances are controlled through
requests to the kernel using OMS primitives, such as
create object, destroy object, create action, destroy oes capabahyhest
action, commit action, and invoke operation. Object ob" '.
classes are exported, so object variables can be typed
automatically in a manner similar to Pascal pointers.
Thus, the object management system can be viewed as Figure 3. Implementation of Ports
a globally distributed heap containing long-lived
objects. For transparency, all actions communicate 5..Summa.
only with the OMS at the node where the process 5, Summary
implementing the action resides (not shown in the
conceptual view of Figure 2). The OMSs, in turn, This paper has introduced an architectural approach I' ,@
communicate using specialized protocols for inter- for decentralized global operating systems in an

* machine communication. They cannot use the general environment of machines connected via an internet of
IPC facility, because they form its basis, high-speed local area networks. A global operating

system manages all resources globally, without - .
making distinctions between local and remote

A primary goal of the OMS is support for network resources. One characteristic desirable of such systems
transparency, wherever desired. This transparency is is tunable autonomy: the ability to construct
provided by making operation invocation uniform, arbitrary logical groupings of resources for the purpose -
regardless of whether the subject of the operation is on of management. Such groupings are independent of

, the same machine as the client invoking the operation. machine boundaries. ?,.- ,
The operating system is thus free to distribute ..
processes and objects without their knowledge (unless
specifically directed not to do so). Thus, languages for A major motivating factor in the design of the
distributed computing, such as PRONET (Macc82] or architecture is the need for reliable data management
Argus [Lisk82) can be well supported. in the low levels of the system. This can be achieved J .-

efficiently by making some constraints, such as
4.2 Resource Management serializability, optional according to particular needs. .-.

Requirements for global resource management alsomotivate the operating system architecture. "" " '

Because this paper is concerned primarily with ,,--
describing an architectural approach, we will not
discuss resource management in detail. The basic The architecture described provides processes and "'
approach is to use the capability-passing mechanisms objects; invocation of operations on objects is perf',med
provide by the object management system to construct through capabilities. Objects are maintainet3 by the .,
capability managers [Kieb78]. Due to the object management system, a component of the kernel. , ..
transparency implemented by the architecture, Despite its integration into a low level of the operating . .
capability managers function independently of their system, the object management system is quite
location in the system. Since all invocations of sophisticated, providing an action environment in ', .
operations are via capabilities and possession of a which actions may initiate, commit, and abort, with ." -.
capability is taken as permission to invoke an appropriate effect on object states. To assist
operation, there is no structural association of performance and reliability, the object management
particular machines with particular decisions. Any system supports variable recovery, synchronization,
object that possesses a capability to implement policy replication, and consistency conditions including (but
decisions can implement those decisions. For example, not limited to) serializability.
each machine might contain a process-management
object whose function is to instantiate and destroy
processes on that machine. Any object that possesses From the base architecture, message based inter-
capabilities for the operations of this process- process communication and a resource policy apparatus O
management object can then create and destroy can be constructed. The capability-based invocation of
processes on that particular machine. The capability- operations on objects makes it possible to construct
based access scheme makes it unneccessary to have a resource managers as capability managers. Arbitrary
"special state" for resource managers--any object can objects can manage capabilities, depending on the "
become a resource manager, thus making it possible to capability-passing primitives of the object
construct arbitrary pools of resources in ependently of management system to provide the neccessary access
machine boundaries. Of course; a choice ofappropriate control Thus, resource pools can be constructed
capability-passing primitives is critical to the success dynamically, and can exist independently of machine l O
of this approach (Snyd8 1]. boundaries.

i.a
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APPENDIX I

ALGORITHMS FOR MAINTAINING REPLICATED DATA USING WEAK CORRECTNESS CONDITIONS

4. ...

JmfGS E. Allohin

• -9-,.,

Abstract

A suite of decentralized algorithms for maintaining distributed replicated data is presented. The -
algorithms do not necessarily achieve serial consistency, but they are adequate for many simple data
storage problems in operating systems and realtime systems. Applications which appear well-suited
to the suite include mail systems, naming servers, appointment calendars, certain types of file
dictionaries, operating system load tables (e.g., routing), and device state in distributed process
control systems. The algorithms are robust and are intuitively easy to understand. The algorithms
assume an unreliable network and tolerate node failures, network partitions, lost, duplicate, and out-
of-order messages. Both goals for replicating data--high availability and rapid response time--are
met by the algorithms. The basic algorithms use resolution tables to state the outcome of conflicts
between concurrent actions. Each algorithm is oriented toward different application requirements
and provides a different degree of message traffic overhead and availability. The efficiency of the
algorithm.s depends on the acceptability of weak correctness conditions in the applications. The
desired correctness condition is formally stated and the basic algorithm in the suite is proven correct -
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1. Introduction

The correctness condition usually applied to data storage systems states that the result of any set of
transactions executed should be the same as some serial execution of that set of transactions. This
serializabilitv-based correctness condition issulines only that transactions execute correctly if run
serially. Distributed systems containing rp licaled data require relatively complicated algorithms to
achieve serial consistency and still obtain acceptable performance. These algorithms restrict
concurrency in order to achieve consistency. In certain applications, however, serializability as a

-,'.-, correctness condition is not required because the results for some class of non-serializable executions
of transaction steps are correct. See, for example, [Lamp761, [Kung801, and (Garc80l In addition,
there are applications where even though the transactions desire to see a serial view, they will accept
some class of non-serial views and consider these views correct as well. These applications will accept
non-serial views in return for certain advantages not possible if strict serial consistency is enforced
Performance lJens82, McKe83l, availability lFisc821, and simplicity [Oppe8ll have been cited as
encouragements to weaken correctness. Thus, there is an interesting class of application areas for
which trading serial consistency for high availability, increased performance or algorithm simplicity N1-

is warranted.

There arc many approaches for supporting copies of replicated data I, ern8l I. Most of these maintain
serial consistency. However, maintaining serial consistency across network partitions (caused by
assumed failure of the communication system) defeats data availability, since at least one copy
cannot be used and in the worse case, only one copy can be used. If weak consistency can he tolerated,
then it is possible to overcome this problem I IHowever, resynchronization of the data copies must still
be addressed during node restart ,,r nr-ti,,rk merge following a partition. Contending with these
issues in an unreliable environment cimplic .t.. the solutions still more. Algorithms which handle
all of these issues tend to be compl.\. t.-ing a variety of expensive handshaking protocols.
Establishing that these algorithms ar' ,orrect, tinder all the possible failure conditions, is generally
quite difficult.

In this paper, we present a suite of decentralized algorithms to maintain distributed replicated data
with weak consistency. Algorithms from the suite can be customized to balance particular tradeoffs
required in different application systems. The algorithms assume an unreliab!- network and tolerate
lost, duplicate, and out-of-order mes.sages, node failures and network partitit ns. Both goals for

"-r replication--high availability and rapid response time--are met by the algorithms. The basic
structure of the algorithms depends on resolution tables to state the outcome of conflicts between ".'
concurrent actions. Each algorithm is oriented toward different application requirements and . -

provides a different degree of message traffic overhead and data availability. The efficiency or the
%.- ,. %algorithms depends on the acceptability of weak correctness conditions in application systems.

*.-, Work which is similar to ours is discussed in lFisc82l, lJohn751, lOppeSl 1, and I McQu781 Most ofour
problem formulation is based on Fisher and Michael lFisc821. Unlike their approach, though, we do
not require each node to transmit the entire node's view of the database whenever communication
occurs: only the changes to the view are sent, and regardless of the number of deletes and duration of
failure, no node need maintain an unbounded list of changes relative to the database size (assuming
the database is itself bounded). We believe that in particular cases (e.g., small sized databases)
passing the entire database is appropriate while in many other applications, this requirement is not

P.%'P acceptable. ' t"
-,,€ ,.. ..

Our work is particularly interesting because we use resolution tables which allow easy visualization
V of the conflict resolution strategy and we provide a formal proof of one algorithm from the suite (with

other proofs following in a straightforward manner from the framework presented). Further, it is our

-".- " "e k.:-- ..:2:
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belief that the suite of algorithms address a wide range of important problems in a clean and efficient

manner. Allchin [Allc831 contains additional information on the desirability of supporting hoth

serializable and non-serializable synchronization facilities in decentralized systems (in particular

operating systems). Specific programmer-oriented tools for controlling atomic action synchronization
and recovery are also presented.

2. Environment and Application )omains -" "0

The general environment assumed by the algorithms involve some collection of nodes arbitrarily
connected via some communication system. The communication network and nodes are considered
unreliable; that is, both may fail either partially or totally. Messages if delivered, however, must
arrive ungarbled. That is, message corruption must be detectable. In addition, it is assumed that the
nodes and the network do not manufacture messages which violate the protocol of the algorithm.

.

Each node contains a view of the entire database which may or may not be current depending on the
state of communication activity. It is later proven that with sufficient reliability and assuming

*. changes to the data cease, then all views will converge to contain the same data. That is, the views
are mutually consistent [Thom791.

-Iach view consists of a set of elements. item names and associated values. Clients manipulate views
by specifically referencing (via names) particular elements in the views. There are four operations
which manipulate a node's view. These eve'=tuall) alter the other remote views (if the changes are
not superceded before the other nodes learn oi' lie f rdt change). The four basic operations are

-'.4 -. ..- ;

* - Insert (x,y) adds an 4.1, inut ith name x and value y

Update (x,.) replace. thi vaif: of the element with name x with the value y

Delete (x) removes I h, element with name x - I
List (set of names) returns an ordered pair of element names and values for all elements

requested which exist in the local view at the time of the operation , -,I

Fischer and Michael (Fisc821 referred to ,i v'erv similar environment and operation structure as a
distributed dictionary problem. In fact, the main difference is that we include an Update operation ""
rhis is an important change, not simply a trival extension. This is true because we also require ,"

basically the same two restrictions:

H. Neither Update(x,y) nor ,lt,',,. ) can he performed at node i unless the element xi.
in the local view at node i.

. 2. All item names used in Insert operations must be unique.

The second restriction explains why the inclusion of the Update operation alters the problem's " .
structure. An Update is thus a primitive operation which can not be formed from In.s,'rt and D,,lt,
operations. These restrictions are required by the algorithms and are quite reasonable in the
application domains discussed below. RI is quite intuitive since operations by definition must name
elements from the local view. R2 provides the assurance that once an item name has been deleted, it
can not be reinserted. This avoids a conflict which would require some additional means to order the
Insert and Delete operations (conflict resolution). Throughout the remainder of this paper a change
refers to either an Insert, Update, or Delete operation. ...

.: ......-
I'. -
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There are two additional operations: Transmit and Receive. Transmit is used by a node to send
information concerning its view to other nodes. Receive is automatically invoked when a message
containing information from some other node is received. No information flows between . views 0
unless Transmit operations are issued by a client The frequency of Transmit operations dictate how
current a particular view is for some node. It is pi esumed that clients will issue Transmit operations
often enough so that views will converge acceptalv often for the applications.

All six operations must he non-interfering wh.n manipulating the local view. Regardless of the
method used, atomicity with respect to concurrent activity among the operations is assumed 0

. Because the maintenance of the view should be relatively inexpensive for many applications, mutual
exclusion may suffice.

The operations and associated restrictions presented above appear to be sufficient for several ,--.. -

application areas Applications which include problems related to maintaining some form of
replicated dictionary mesh well with our approach For example, some distributed applications which
include this type of problem are mail systems, naming servers, file directories, appointment calendars
and operating system load data maintenance (, g . routing tables). In addition, applications like
process control systems which alter data valticz rapidly, but do not require serial consistency can also
be "ipportcd These applications tend to h, .lf c'i ('ting in nature and do not necessarilv require
-,eril con.,stencv

3. General Suite Structure

We diide databases into two types: independnct and dependent. Independent databases permit
lemnts to be changed by any node in the network. Thus once a data item name has been created, it

can be manipulated by any node in the network. (,,I,.ndent databases permit elements to be changed . :
only by the node which created the data item narm. That is, changes depend on which node was the
item's creator.

We also consider two levels of fault-tolerance: propagation and no propagation. Propagation implies
every node must guarantee all other nodes receive a change, even when a node is not directly
responsible for the change. Thus, even if the node which makes some change fails (or outward
communication from the node fails) the chan-e can still propagate through the network, depending
on the state of the other nodes and remaining communication system. This approach implies that
data availability is more significant than message traffic overhead and local storage space. The
information regarding the change is stored at each node until that node is sure every other node has
seen the result of that change. No propagation implies that only the node responsible for performing
a chan.ze mu. t ensure that every other node ha.- revived the change. 0

The me ,age distribution procedure is not specified in the suite, since the network tlri,hgv and
availability requirements dictate how messages are actually distributed throughout the network.
Messages could be broadcast, multicast, or simply sent to some next node.

The ,tructure* of the suite consists of a base algorithm and resolution tables to specify algorithm "
. .. actions when changes occur locally or are received from a remote node. There is a different resolution

table for each combination of database type and fault-tolerance discussed above. The base algorithm
need not be changed. In the following we present an overview discussion of the basic data structures
and base algorithm. Then in Section 3.2 we discuss certain aspects of the algorithm in detail.
Finally, in Section 3.3 the base algorithm is presented together with the first resolution table.

% 3.1 Algorithm Overview "

%5

% %* %%

A%:- % ,%% % %

% % %
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%_-. The basic algorithm is assumed to be replicated at all nodes. Three basic data structures are used in "L)

the algorithm; each node has a separate set of these variables:
0.

Vi the database view for node i.
SS, a list at node i orchanges which may not have been seen by the other

nodes. (SS repre.ent a %. ichronization set.)
t, a timestamp array which details how current node i's knowledge is of

every other node.

Both SS and t are transmitted to some collection of remote nodes upon a client's Transmit request. V
is not sent between nodes except during a cold start of a node; see Section 5.6.

When a change occurs at some node i, the change is reflected in the SS, and the database view V, The
change is marked with the current value of a node-relative Clock. Synchronization sets contain at
most one entry for every item name changed. A particular change may be superceded at any time,
either before leaving the originating node or at some later intermediate destination. Since a change
may be removed from the SS before all nodes have seen that change, another method is used to permit
a node to determine when the changes have been processed by remote nodes. The timestamp array t
is used for this purpose This array is indexed hy node numher. The value of each entry represent. it
node-relative Clock number. For example, if t,1 51 = 3. then this means that node i has seen the re.sult
of all changes from node 5 through time 3 (relative to node 5). We use the term result here becautse
changes can be superceded in the synchronization set at any time. Thus a node may never see certain
changes, it could see some newer change.

In the propagation approach a node i maintains an SS entry for every change entry applied to the
database locally until node i is sure every other nole h,,s received the change. When a SS arrives it is
merged with the local SS. Entries may be addi-d or de..leted to both V and SS according to the
resolution table. Removal of a change entry fro,, ode's SS can occur in one of two ways:

case I: A node can be passed a SS containing a change entry which has been seen by all nodes
except for the receiving node. --1

case 2: A node can receive a SS which does not contain the change item and the received t array
shows that the sending node has seen a result from the node where the change

"'. .i~ originated at least through the time when the change occurred. Because the sending
node definitely has seen the change and does not have the change entry on the SS, we
know (by induction) that case I must have occurred at some node in the past. Thus the %."-. *"

change entry at the receiving node can be deleted.

In the no propagation approach, the node performing the change is the only ndh, which maintains the
change entry on the SS. The other nodes perform the change, but do not change their SS. An "--
originating node i can determine when an entry has been seen by all nodes when it receives t arrays
from all remote nodes which reflect a time for node i greater than the time when the change was
performed.

After node i receives and processes some remote Ss, each entry in the local time array t, is set to the
maximum oft, and the remote time array received (tj). In essence, node i now has a view representing .
both nodes i andj through the times given in the new timestamp array.

3.2 Details Concerning the Base Algorithm and Resolution Tables

In this algorithm, the Clock is assumed to provide real time. However, as discussed later, it is
possible to consider the Clock function as simply a monotonic strictly increasing function. Assuming"

% -% % '

% .
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that the Clock function reflects time is particularly attractive since failures do not require special
corrective action to ensure the monotonicity property. This Clock property is stated below:

C1. Clockq+I > Clockq for all executions q of the Clock function

It is assumed for this presentation that item names satis v. restriction R2 by using unique names
generated by the Uniquenarme function. This, of course, i. not required in applications in which
duplicate names are impossible.

The procedure Resolve processes new synchronization sets against local synchronization sets. Every
entry in each SS must be examined. If the other SS contains an entry with the same data item name,
then the two entries must be resolved and only one entry kept. Fake entries are created if only one of
the SS's contain a particular data item name change entry; see the following paragraph. The order of

'4. - processing each synchronization set is unimportant, but an entry must he processed only once.

Resolution tables are used to apply two synchronization sets against each other to update the
database view and create a new synchronization set which includes the most current information "
concerning changes The table format has been extended for simplicity to include rows and columns
to represent entries which may be present in one of the synchronization sets, but absent in the other.
This permits the resolution table to be used uniforml.y There are two possible reasons why a
particular entry could be missing- the result of the change has already been seen and removed or the
result of the change has never been seen. Each axis includes the lines AbsentSeen and .

AbsentNotSeen to represent these conditions. Refer to the procedure Resolve and the type and
variable definitions on the following pages for the definition and use of changeitem..

,,., AbsentSeen 0 there is no entry with the specified name in the associated

synchronization :,et (absent from SS),
* and by the associated t we know that changes have been processed

through the value in the time array (seen by the node). That is:

tlz.cnl L- z.ct, for some changeitem z

AhsentNotSeen • there is no entry with the specified name in the associated
synchronization set (absent from SS),

" and by the associated t we have definitively not seen the change
(notseen by the node). That is:

tlz.cnl < z.ct, for some changeitem z

The procedure Performn Action used in Resolve is simply a dummy procedure which represents
performing the actions defined in the resolution table on hoth SS and V. Thus,

I'er/urm Action x, y, SS, V) .-. .

* ." 'represents using the x.op and yop fields (of the changeitems x and y) to select the appropriate x axis
and y axis array positions in the table. The actions specified at that location are then to he performed -

on SS and V (Note that a dummy x or y entry is created if the item is missing from the corresponding
synchronization set; the op field is set accordingly.)

In all of the resolution tables presented below Update conflicts are resolved in favor of the higher
change time (ct); that is, probably the latest change wins. It is possible that the latest change may
not win, though, because the different node clocks may not be physically synchronized. It is also
possible for two changes to be made at exactly the same time. This conflict is resolved by using a total
ordering on the node numbers. This algorithm does require that the Clock functions of the individual .-.

6 %*. -V,. %
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The basic algorithm is assumed to be replicated at all nodes. Three basic data structures are used in
the algorithm; each node has a separate set of these variables:

Vi the database view for node i.
SS a list at node i orchnnge. which may not have been seen by the other.'-- ". ~~nodes. (SS repre.ent. a .s. nchronization set.) .;-
'.-"t, a timestamp array which details how current node i's knowledge is or

every other node.

Both SS and t are transmitted to some collection of remote nodes upon a client's Transmit request. V
is not sent between nodes except during a cold start ofa node; see Section 5.6.

When a change occurs at some node i. the change is reflected in the SS, and the database view V,. The """'"
" ;' change is marked with the current value of a node-relative Clock. Synchronization sets contain at

most one entry for every item name changed. A particular change may be superceded at any time,
either before leaving the originating node or at some later intermediate destination. Since a change
may be removed from the SS before all nodes have seen that change, another method is used to permit
a node to determine when the changes have been processed by remote nodes. The timestamp array t
is used ror this purpose This array is indexed by node number. The value of each entry represents a
node-relative Clock number. For example. ift,5l = 3, then this means that node i has seen the rcsult
ofrall changes from node 5 through time 3 (relative to node 5). We use the term result here becautse
changes can be superceded in the synchronization set at any time. Thus a node may never see certain
changes, it could see some newer change.

In the propagation approach a node i maintains an SS entry for every change entry applied to the
database locally until node i is sure every other node has received the change. When a SS arrives it is
merged with the local SS. Entries may be .dded or deleted to both V and SS according to the
resolution table. Removalofra change entry from a node's SS can occur in one of two ways:

case I: A node can be passed a SS containing a change entry which has been seen by all nodes o
except for the receiving node.

case 2: A node can receive a SS which does not contain the change item and the received t array
shows that the sending node has seen a result from the node where the change
originated at least through the time when the change occurred. Because the sending
node definitely has seen the change and does not have the change entry on the SS, we
know (by induction) that case I must have occurred at some node in the past. Thus the
change entry at the receiving node can be deleted.

In the no propagation approach, the node performing the change is the only nodh, which maintains the
change entry on the SS. The other nodes perform the change, but do not change their SS. An
originating node i can determine when an entry has been seen by all nodes when it receives t arrays
from all remote nodes which reflect a time for node i greater than the time when the change was 110
performed.

After node i receives and processes some remote SSi, each entry in the local time array t, is set to the
maximum ofti and the remote time array received (tj). In essence, node i now has a view representing
both nodes i andj through the times given in the new timestamp array.

3.2 Details Concerning the Base Algorithm and Resolution Tables

In this algorithm, the Clock is assumed to provide real time. However, as discussed later, it is "
possible to consider the Clock function as simply a monotonic strictly increasing function. Assuming

p.-.
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that the Clock function reflects time is particularly attractive since failures do not require special
corrective action to ensure the monotonicity property. This Clock property is stated below:

C1. Clockq+I > ClOCkq for all executionsqof the Clock function

It is assumed for this presentation that item names s ati.f r striction R2 by using unique names
generated by the Uniquename function. This, of coutrse, is not required in applications in which
duplicate names are impossible.

The procedure Resolve processes new synchronization sets against local synchronization sets. Every
entry in each SS must be examined. If the other SS contains an entry with the same data item name,
then the two entries must be resolved and only one entry kept. Fake entries are created if only one of
the SS's contain a particular data item name change entry; see the following paragraph. The order of
processing each synchronization set is unimportant, but an entry must be processed only once.

Resolution tables are used to apply two synchronization sets against each other to update the
database view and create a new synchronization set which includes the most current information
concerning changes. The table format has been extended for simplicity to include rows and columns
to represent entries which may be present in one of the synchronization sets, but absent in the other.
The. permits the resolution table to be used uniforimlv There are two possible reasons why a
particular entry could be missing: the result of the change has already been seen and removed or the
result of the change has never been seen. Each axis includes the lines AbsentSeen and
AbsentNotSeen to represent these conditions. Refer to the procedure Resolue and the type and
variable definitions on the following pages for the definition and use of changeitem.

AbsentSeen * there is no entry with the specified name in the associated
synchronization :et (absent from ss),

0 and by the associated t we know that changes have been processed
through the value in the time array (seen by the node). That is:

tlz.cnl > z.ct, for some changeitem z

AhsentNotSeen 0 there is no entry with the specified name in the associated
synchronization set (absent from SS),

0 and by the associated t we have definitively not seen the change -
(notseen by the node). That is:

t(z.cnI < z.ct, for some changeitem z

The procedure Perform Action used in Resolve is simply a dummy procedure which represents
performing the actionsdefined in the resolution tahle on h,,th SS and V. Thus,

Perform Action (x, y, SS, V)

represents using the x.op and y.op fields (of the changeitems x and y) to select the appropriate x axis
and y axis array positions in the table. The actions specified at that location are then to he performed .

on SS and V. (Note that a dummy x or y entry is created if the item is missing from the corresponding
synchronization set, the op field is set accordingly.) -.

In all of the resolution tables presented below Update conflicts are resolved in favor of the higher
change time (ct); that is, probably the latest change wins. It is possible that the latest change may
not win, though, because the different node clocks may not be physically synchronized. It is ulso ;-0
possible for two changes to be made at exactly the same time. This conflict is resolved by using a total .
ordering on the node numbers. This algorithm does require that the Clock functions of the individual"'_iv''" '
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nodes be logically synchronized (Lamp78l. This is accomplished within the Receive procedure.
-W Section 5 discusses alternative methods for conflict resolution.

3.3 The Base Algorithm and the First Resolution Table

* The base algorithm is piresented on the following pages. The notation for the algorithm is based on a
* derivative or Pascal. Some additional notation is used to avoid trivial details. The first resolution
* table is presented in Figure 3-1. This table represents the independent / propagation type of system

.structure. The other resolution tables are presented iii Sectiurn 4.

-:There amre a variety of simple modifications possiblc for the base algorithm separate from the
resolution table. These algorithm modifications are discussed in Section 5. Because the
mod ifications are so si mple we consider all the possible der ived alIgorithms to be part of the su ite.

ii-.
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Types and Variables

0!

integer{he rtnd
ts (tetype reunelrom~ the (Nru..k function)
value {thc type for the items in the dIftdlhase}

I)efined Types:0

node = I..Maxodes

itemname = record
itemnstring string;
creator node;
creationtime ts

end;

item = record
iteinn itemnaidfllC
Val Value

endl.
changeitem = record

citem item,
op (insert. Update, D~elete, AbsentSeen,

Abeto Seen);

knownby set of node
end;

tsa rray = arrayl nodelI of ts;

changeset = set of changeitem;

messge = record
from nodle;

4.remoteT tsarray,
remoteSS changeset

end;

G;lobal Variables (for each node):

Vset of i tem in{this node's view of the database)
SS changeset; {the synchronizing set)

. t tsarray; (Time array; e.g., tQ51 =3 =0 this node has seen
the result of all changes from node 5 through
time 3 (relative to node 5))

alinodes set of node; {the current list of all nodes which can view the
databasel

node, Ithc node number of this node)

1. % . ~ - . . . . . , . .* . . , -. '. .. , . .. .. .. . . .
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The Basic Algorithm

function Uniquenamne (xstring: string): itemname

begin
Uniquename: < Zxstring, i, Clock >

end;

7-".
function Insert (xname: itemname; vin: value): (ok, alreudyexists)

var xitem.

time ts;
r changeset; , =

local boolean;

begi ixnaiie E V.itemn then Insert:= alreaclyexists.

t imne = Cloc)(k;
x:= <xname,vin>
t(i): time.

r {<x. Insert, i, time, (i) >}i

en; IlsrHvs,,Ive~ (local, SS, t. r, t, V)

X item;
%time ts;

r :chungeset;-
local :boolean;

begin
if xname f V.itemn then Update: nonexistent.
time: Clock:
x.= <xnamc,vin>

* t(i): time,
r =(< x, U pdate, i, ti me, (i) >
local: = true;
Rtesiduve (local, SS, t, r, t, V)
Update := ok

end;

4e*
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function Delete (xname: itemname): (ok, nonexistent)

var
x item, '~

junk value- -

r changeset.

begin
-if ixname 9 V.itemn then Delete:= nonexistent;

time := Clock.
x: <xname, junk >
t(i): time;
r: < x, l)elete, i, time,{Ji}>)
local: = true;
Resolve localI, SS, t, r, t, V)
Delete: = ok

endI;

function List (wanted: set of itemname): set of item

begin
rvturn from V the wanted items, if present

end;

procedure Transmit

begin
Saueft, SS, V. Isave in permanent storage all changes since the last save.

This can be done by an incremental log.)
Send(< i, t. SS>) {Send the view information (represented by SS) in a message

to some set of other nodes)
end;

procedure fvceirs (i: message)

v r local : boolean; ''

begin
localI: =false;

Resolue(local, Ss, t, m.remoteSS, m.remoteT, V);
if Clock :5 max (m. remoteT~jI I I 1 j !5 MaxNodes) then

Clock: max (m.remoteTjl I SI 5j MaxNodes) + I
end;

V V %...

% % % %
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procedure Resolve ( local boolean;Iivar old SS changeset; var oldt :tsarray;0
var newSS changeset; newt :tsarray;
var V set of item) -

var
tcmpoldSS changeset.
matchitcms changeset;.
X changeitem;
y changeitem;

begin
tempoldSS = oldSS; {note: In practice oldSS does not need to he copied. It is shown this f

way for clarity)

if not local then begin
for each x ( tempoldSS do
begin

niatchitems: = 1z ( newSS I x.citem.itemn = ~citemt iiiin(
newSS: =newSS - mutchitems
if matchitems =0 then begin (make a du in cliangeitena entry)

if newt[x.cn 2t x.ct then y.op = AbsentSeii

enelse y-op:= AbsentNotSeen

else let y ( matchitems, {note: I matchitt tw.,- I

Pe'rform Action (x, y, oldSS, V)
end

end,

for each v newSS do
be~gin

matchitems: = Iz EtempoldSS I y.citem.itemn =z.citem.itemni

if matchitems = 0 then begin (make a dummy changeitemn entry)
ifoldtly.cnl 2! y.ct then x.op = AbsentSeen
else x.op: = AhscntNotSeenAI

end
else let x E matchiterns: Inote: I matchitems 1 1)

Perform Action (x, y, oldSS, V)
end; @

oldtfjI max foldt~jl, newtljJ I 1 SjS MaxNodes)
end;

%,*e
. %
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xW

yInsert Update Delete AbsentSeen AbsentNotSeen

Inet SS:M(x.v) SS: nc SS:nc SS: nc SS-A(y)
V:nc V nc V~nc V:nc VA (Y)

Update SS: WX,Y) SS : SS~nc SS:nc SS: A(y)
V: My) V.*2  V:nc V:nc V:Aty) if absent

R(y) if present

Deee SS:R(x,y) SS: R(x,y) SS:M(x,y) SS:nc SS:A(y)
Deee V: 6W ~ V:l)(x V:nc V:nc V: D(y) if prese nt

Absent SS )(x SS Dl)S: ) SSD:x 5- SS:

Seen V:nc V:nc V:nc V:- \:

Snc SS nc SS: nc SS. SM
No VC li i e V V:

Seen nc: no change

1: if (v.n v.cn) and (x.ct =yect) then M(,v~)
else if (x.ct < y.ct) or (x.ct = y.ct and x.cn <y.cn) then R(x. y)

*Rk) if x replaced in *I

SS A~j) ~Add jto oldSS
union local node number into knownby of j
if knownby = alhiodes, then D(ji)

J~k) Repl ace j on oldSS with k
union01 local node number into knownbv ofj
ifknownhy = uilnodes, then 1)(j)

* l)(j) lvletj on oldSS
M Q, k) Merge knownby sets intoj '.

'a if knownby = alinodes, then D(j) '-'

V: A j) n Add j.citem to V d*

RQj) - Replace the item with the same name in V with j.citem
DQj) - Delete item with the name j.citem. itemn from V

-Figure 3-1 Resolution Table for Propagation/Independent
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4. Other Resolution Tables
0 .

The resolution table presented with the base algorithm (Figure 3-1) assume. that every node should
propagate a change and that items can be changed anywhere throughout the network (i.e., the
database is independent). There are a variety of other assumptions which can he .upported by simply
altering the resolution table provided with the base algorithm.

First, we consider the situation where the database is dependent. Recall that changes can occur to a
data item only at the node which originally created the item in this type of database. In addition, we
assume that other nodes ar~e not responsible for ensuring the changes are seen by every other node;
the node making the change is responsible for verifying this (viz., no propagation). This problem is -

somewhat trivial, but nevertheless quite common. Consider operating system load tables which .,
specify the current load information for the node. This is then used by other nodes in some
decentralized load distribution procedure. Clearly, only one node will be changing the load
information and if the changing node. fails there is little reason for concern over change propagation.
Figure 4-1 contains the resolution table for this problem. Note that there are no Update conflicts in
this example, so logical Clock synchronization is actually not needed. If the database was dependent,
but propagation was desired, then the resolution table of Figure 3-1 would he used.

The second alternative resolution table we consider represents another common problem: even
though changes can occur at any node (independent), propagation of this information by every node in
the network is not required (no propagation). This may be reasonable in environments such as high .

speed contention or ring based local area networks in which the nodes appear fully connected. Thus ""'
the originating node for a chiange is responsible for ensuring that every other no)de learns of th" .
change. Figure 4-2 contains the resolution table which specifies the action-; to he taken in this
environment.

The following table summarizes the requirements satisfied by the different resolution tables

* ft .. ,

requirements dependent independent

propagation Figure 3-1 Figure 3-'

no propagation Figure 4-2 Figure 4.2

Figur 4-1°

..- -

-ft -.. ,.,-.
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yInsert Update Delete AbsentSeen AbsentNotSeen

Insert SS: - SS: - SS:- SS:nc SS:A(yv) if y.cn
V-V-V-V:nc V:A(y)

Update SS: R(x,y) SS: R(x,y) SS:- SS:nc SS:A(y) if y.cn =

V:R(y) V: R(y) V:- V:nc V:A(y) if absent
-. R(y) if present

Delete SS.R(x,y) SS: R(x,y) SS:- SS:nc SS:A(y) if y.cn =i
V: DWx V: DWx V:- V:nc V:l)(y) if present

Absent SS:K(x) SS.KWx SS: K W SS - SS:-
*Seen V nc V:nc V:nc V:- :

Ahtt SS:nc SS: nc SS: nc SS: - SS:-
Not V:nc V~nc V:nc V: -
Seen nc: no change

SS: A(j) Addj to oldSS
union local node number into knownby ofj
if knownby = a Ilnodes, then DU)

R~j,k) Replace j on oldSS with k ~
union local node number into knownby ofj
if knownby = allnodes, then DUj)

1)(j) Deletej on oldSS
K(j) Union remote node number into knownby orj

if knownby = ulinodes, then l~j)

V: AU) - Add j.citem to V
RU) - Replace the item with the same name in Vwith j.citem
Dj) - Delete item with the name j.citem.itemn from V

Figure 4-1 Resolution Table for No Propagation /Dependent

JO J-'r
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yInsert Update Delete AbsentSeen AbsentNotSeen

Inet SS: - SS.nc SS: nc SS:nc SS:A(y) if y.cn a

Update SS S(Xy) 55* SS: nc SS:nc SSAy Ifyc
V: R(y) V *2 V nc V:nc V-A(y) if absent

R(y) if present

Delete SS:S(X'y) SS:S(X'y) SS: nc SS:nc SS:A(y) if y.cn
V: D(X) V: DWx V:nc V:nc V: D(y) if present

Absent SS:K(x) SS:K(x) SS:.K W SS: - SS.-
A en V.nc V:nc V:nc V:- V

Abet SS: nc SS-ne 'SS: nc SS: - Cs
VNot V nc V:nc V:-

Not.

See nc: no change

1,: if (x.cn = y.cn) and (x.ct = yect) then R(x~y) '%

else if (x.ct < yct) or (x.ct v .ct and x.cn <y.cn) then DWx

* 2: R(y) if xreplacedin *

SS: A(j) Addj to oldSS
union local node number into knownby of j
i if k now nby = a IlInodes, then DUj)

R(j,kJ Replace jon oldSS with k
un~ion local node number into knownhy ofj
if knownby al lnodes, then IDhj)

.4 ) lDeletej on olISS
S(j,k) ifj.cn = kecn and j.ct =k.ct then RWj,k)

else DU)
K(j) -Union remote node number into knownby ofj

if knownby = allnodes, then 1)(j)

V: A j) -Add j.citem to V
RU) -Replace the item with the same name in V with j.citem
D(j) -Delete item with the name j.citem.itemn from V

Figure 4-2 Resolution Table for No Propagation / Independent

C,%

' %Wj4



F 7.1 7:1

Page 168 Replicated Data Appendix I

K!;. _,___ ____

5. Variations
-

The following sections discuss extensions of the base algorithm and resolution table. The particular
variations presented adapt the basic scheme to accomodate a variety of different application
requirements

5.1 Sending Individual Changes Immediately

When the synchronization set is sent from a node, all changes which may not have been seen by some
other node are sent. Because this set may only be sent occasionally by some applications, it is
desirable to consider the possibility of sending a change immediately (without the remaining
members on the synchronization set). Whether this is appropriate depends on several factors. If ".
changes are rapid, a substantial load on the network could result. This is possible because changes
are overwritten in the synchronization set as soon as they are detected. If changes are sent
immediately, then some changes could be sent which would not have been in the base algorithm.
There are, however, a variety of applications which could benefit by the rapid distrihution of a
change 'rhe synchronization set would be transmitted as a backup precaution to ensurc that all
changes arc eventually acknowledged.

The same resolution approach can be used to solve this problem. Ilowever, care must he taken
because each change sent is independent from the preceding one. The receiving node can not
determine whether all preceding changes have been seen or not. That is, receiving a particular -. -.

change from some node j does not imply reception of all previous changes from node .. Therefore, "
when the change is received the new change should be resolved against any changes of the same
name in the local SS, but the local SS entries should not be resolved against absent entries in the
incoming SS. This is exactly what is required when performing changing locally at a node and thus
the local variable is set to true.

Below are the code fragments to accomplish sending changes immediately. Another message type is "
defined which is sent for every Insert, Update, or Delete performed. We will assume that the two
message types can he distinguished. .-.

. In Insert, Update and Delete immediately before returning ok:

Set r to have a knownby list of 0
Save (t, SS, V); {lncremental save)
Send,( < i,r>); (Special send of single change}

* Add a new Receive operation:

procedure Receive2 (m: record from: node; remoteSS :changeset; end)

var
local • boolean;

begin
local := true, (pretend it's local-
Resolve (local. SS, t, m. remoteSS, t, V)

end;

- 7
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5.2 Specifying Conflict Strategies for Ordering Update Operations

All of the resolution tables presented thus far have considered only retaining the most recent change. .-0

As mentioned previously, this is not always achieved because the clocks may not be physically
synchronized. (However, in environments such as local area networks, the clocks are usually very
close.) Even if the the change which would be retained was the most recent, this may be
inappropriate for some applications. That is, sometimes it may be desirable to choose the earlier
change rather than the later one. For example, if two clients conflict when changing an ite'm iI d
reservation database, it is the earlier change which should probably win. "

Using just older and newer as the only conflict resolution strategies is still overly restrictive. There
are several other functions which could be used to resolve conflicts. The functions Maximum and
Minimum, for example, appear quite well suited for conflict resolution for some application data
items in reservation and similar systems. Any (commutative) function which totally orders the data
values will suffice. Note that in the base resolution table, node numbers were totally ordered and 4.
used to break Update conflicts which tied on their change times. This was used because each node has,. .

a separate execution agent and thus could not create the needed total order.

A trivial extension to address different conflict resolution strategies for each type of dlat item is to
include with each item (when Inserted) the type of conflict resolution Strategy which should he
performed on Update conflicts.

5.3 Functional Operations

Update operations replace the value of a data item in the view. This prompts the Update , Updute.
conflicts which must be resolved through some type of total ordering on the changes. l'herc itrc a
variety of operations which do not have this inherent conflict problem. For ex×mple, the . .
commutative operations of Increment and Decrement can not conflict since the result would be the ... -

same regardless of the order executed. Thus, items in the database could be marked as being
manipulated only through some specified set of functional operations and avoid all conflicts. The
changes to the resolution table would be quite simple. One new column and one new row must be
added for functional operations. Instead of replacing entries on the synchronization set, functional
changes must add new entries. As the entries are verified to have been seen by all nodes, the entries
are deleted as before. It is assumed that data items which use functional operations can not be
manipulated through the Update operation. If a Delete operation is performed, then all functional
entries on the synchronization set should be removed. Thus, an Insert can be performed followed by
any number of functional operations and finally followed by a Delete operation. The modifications to
the resolution table are straightforward and are not shown here.

5.4 Atomic Changes

The atomic operations (which change the database) presented thus far are the primitives Insert,
Update, and Delete. If it was desired to combine these operations into a larger transaction, then the
transaction would not maintain the same properties as the smaller operations. Since each change to a
view receives a Clock timestamp, it is not possible to ensure that multiple changes will be treated '

uniformly with respect to conflicts. What may be desired in certain cases is that multiple changes -.

either all win, or all lose in a conflict. One alternative is to assign the same Clock time to every
change in the transaction. This guarantees that if two transactions containing only Update
operations manipulate the same items, then the transactions can be serially ordered.

S.% 
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5.5 Limiting the Size of Synchronization Sets

Changes remain on the synchronization sets of all nodes responsible for information propagation
until all nodes have acknowledged the change. During node and network failure the sets could
become quite large. This is the cost for not passing the entire view around the network. Ifdata items
are not deleted, then the size of each svnchronization set is bounded by the size of the view. There
could be i change for every data item in the view, but since changes are overwritten if an entry
already exists, the set size does not change regardless of failure duration. If, however, l),l''v.
operations occur, then the simplistic scheme presented thus far would allow the synchronization set
to become unbounded. There appear to he two straightforward solutions to this problem. Each of
these is discussed below.

..".. . ..,

First, the SS could be limited to contain only n members with each node i owning 0, memhers. The . - -

nodes could be assigned different amounts, provided that each SS has sufficient space for all the
entries. That is,

A. ,:-=,

t.g n.rN,,de" " -

n= o

If a local client makes a request of the system and its allocation on the SS is depleted, then no Inserts
or Deletes should be accepted. Updates can he accepted only if the item is already in the node's SS.
This allows all remote node synchronization sets to be accepted. This is of course a pessimistic
strategy, the entire system could stop accepting Inserts and Deletes. ifa single node fails. I luwvevr, in
the case of a simple node failure, it is relatively simple to eliminate the failed node from Allnodl. and
demand that the failed node reinitialize when it restarts (see Section 5.6). It is much more
complicated if the network communication system has failed and the network is partitioned The
second alternative could be used in cases where this solution is unacceptable.

The second solution involves replacing the Delete entries on the synchronization set with a
DeleteRange entry. Two Delete entries (related to the same node responsible for some change) can be
combined if the view contains no intervening view items created by the same node. This is true even 6'
if the node which is creating the l)eleteRange entry did not delete all intervening items in the view.
When a DeleteRange entry is received, it can he expanded to match all items in the range. The test for

• intervening is made on the ctime field. For example,the following entry would delete all items
% created by node number 5 from time 1 through time 8.

DeleteRange (creator = 5: ctime = ..8: cn 4),,.4
It can be proved that this is sufficient to bound (within a proportionality constant) the SS size to the
size of the view.

..6 Online Inclusion / Removal of Nodes

Even though the suite supports "automatic" reintegration of nodes supporting the database in most
cases, throughout the life of the database certain nodes may fail beyond automatic database repair
(e.g., disk crash). In addition, nodes may be added or removed from supporting the database. These
situations require a means for a node to resynchronize with the current members of Allnodes. We will I
refer to this situation as cold starting.

Since Allnodes can be changing over the life of the database, there is no reason not to place Alinodes

'S ,
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directly into the database. The value then propagates naturally throughout the network when a
change is issued. Removing a machine from the participating group of database nodes is
straightforward. However, adding a new member requires an agreement procedure which is quite
similar to that of two phase commitment [Dole82, Gray78l. A sketch of the procedures is given below.

*Remtoving aNode i:

Allnodes: = Alinodes - fi}
Update Ailnodes

0 ol tartina Node i

V:= 0; tfkl = 0 Vk; SS:= 0; Allnodes: f i); St ilibooting: =true; Talkingnodes:=0

oSend request for boot service to everyone; pass node number
All receiving nodes with Stilibooting = false should send node i their node numbers

.0% For all nodes which respond (before timeout limit), add their node numbers to Talkingnodes
While (Talkingnodes 0) und (Stilibooting) do

Pick soine node, suy. from Tatkingnodes {picked as desired; e.g., closestj

7Talkingnodles: = Talkingnodes - U
Send request for V, SS, and t to nodej
Ifrthis message is received byj, thenj must add i to Ailnodes before replying
If i receivesjs view information (before timeout limit) then
begin

create a new SS by making an Insert entry for every item in the database
Merge the returned remoteSS into SS (through standard resolution)
tlkl:= remoteTikl,Vk :r

* Stilt booting: = false
end

end

if Stilibooting = true then occasionally request boot service (by repeating above from 0)

0 -old Starting the First Node i:

V: 0; tlk]: 0OVk, SS:= 0; Allnodes: (4}; Stillbooing:=false;
I, %~

If there are no nodes which respond, then the node is free to continue, however it must occasionally
attempt to communicate with other nodes which may be supporting the database. Note that this
procedure allows nodes to join the current group or viewv communicating nodes. It does not support
two nodes which are both Stillbooting to share information. This is allowed only after each has joined
the primary group.

%~~~ .. l .-
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6. A Formal Model of the Base Problem

In this section we provide a formal framework for considering the algorithms presented in his paper.
In addition, the correctness condition for the base algorithm and resolution table is given.

Let W he the domain of values. Let D) be the domain or element names. Each view of the dataha-.
* -. then is asubset of D X W.

Let flasic~ps = (Insert(xy), Update(xy), Deleteix) I x E D, y E W . Let Other~ps = (Lisi(Q) IQ Q 13} u
(Transmit(m), Receive(m) nIm is a message . And finally, let A1l0ps = BasicOps U OtherOps.

Fix some particular execution of the system. Each instance of an operation from All0ps corresponds
to an event. Let E be the set of all events occuring in the particular fixed execution.

Let 2e: E~- All0ps be the operation associated with each event, where :E -~node be the node at
which some event occurred, and when: E is be when the event happened relative to the Clock at the

nodcl( where the event occurred. That is, wheri(e) =Clockwvher(ej.

lDerinc - to he a relation on E X E~, -happened before"', such that

01. if el, e2 E. where(ei) =where(e2), and op(ej) is performed before op(e2),

then el - e2.

02. ife1 .eq) E E,op(e1 ) =Transmit(ml) and op(e2) =Receive(rn), then el-c*c2.

03. if ete 2 , e3 E,~ et -*e.) and e- e3, then et- e3 .

04. ifeE E, then e-e.

We can now define the correctness conditions for the base algorithm and resolution table. Recall that -

that approach supports any node making changes to the database and each node is responsible for
ensuring every other node has seen some change. Let view: E -- 2(D x W)be defined as follows: (x,yv) 7

L'ewe) iff there exists 0 E E such that

V 1. i eand op(6) E {Insert(x,y). Update(xy)}

V2- (Ve)[(Removed(e,g) ~ '(e --.e*)l

where Renzoved(e.6) - Iopge) = Ielete(x)I or
[op~e) =Update(x,y') and o,%.e) =Inseroxy) and y ;t Y'l or
Jop(e) =Update(x,y) and op(i) =Update(x~y)

.1~and Earlier(i,e) and y ;t y'l

and Earlier(ei,e2) H when(et) < when(e2)1 IOr

[when el) =when~'e2) and where(e1) <Z where(e2)11
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7. Proof of Correctness of the Base Algorithm and Resolution Table (3- I)

To prove the base algorithm and resolution table correct we must show that for all e, view(e) = V,..
That is, the formal view and the database must contain the same set of (xy) after every event e'. The
following additional notation is required for the proofs.

V,(and,V) V at where(e) immediately after (respectively before) completing event e

t, (and ,t) = at where(e) immediately after (respectively before) completing event e

SS, (and SS) = SS at where(e) immediately after (respectively before) completing event e

Because SS's contain representatons of events, we will refer to SS's as if they actually contain events. .

Of course, only events from BasicOps have such representations. Thus, e ( SS implies that op(e) E
HasicOps. It is obvious from the program code that the program variables cn and ct for some
changeitem contain the values of the functions where and when for the event associated with the
particular changeitem. For notational convenience, we will therefore consider where and when to be ,1
stored with each event which is in a SS.

We will not consider any operation to be an event which is rejected because of an error. Thus, RI and
R 2 are assumed to hold.

In the proofs. minimality is referenced. Event e is minimal to event e' with respect to some condition
B iffe -. e' with condition B holding after event e and there does not exist an event d such that d -. '

-. e' and condition B holds after event d. Thus mininality corresponds to the concept of earliest.
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4,.

* Lemma I

ife -e', then

(a) te(i) .<5 t,.(i).-.-...

(hN t(i) s e't(i) if where(e) where(e')
(c) te(i) S 't(i) if where(e) = where(e').

Proof

By inspection and the Clock property C1 .V

Lemma 2

if(xY) E Ve', then there exists i E E such that 4 is the event which placed (xy) into Ve. op() "
E {Insert(x,y), Update(xy)j, and e -- e.

Proof -"

ly inspection of the resolution table (in particular axis y: Insert, Update; axis X: all) and
induction on --* with initially V = 0, it is clear that there may be several events which
precede e' and which could have placed (x.y) into Ve.. Obviously, only one of these events -
actually placed (x,y) into Ve, Let d be that particular event.V

Lemma 3

ifop(e) E BasicOps, op(e) E BasicOps, e - e, and e e e', then when(e) < whente').

Proof ""f.

(1) if where(e) = where(e'), then by C1: when(e) < when(e') .. .
(2) if where(e) * where(e'), then it must be the case that '-

e -. e" - e" -- e' with where(e) = where(e") and where(e') = where(e') and op(e")
= Transmit(m1 1, and op(e"') = Receive(m 2 )

(3) Thus hy the code in Receive, we ensure that when(e) < whe ',e.V,

Lemma 4

ifep(,') {Insert(xy). Updat,(x,y)j then (x.y) E V.

Proof

(I) if op() - Inser(x,y), then by the y axis Insert row in Table 3-1, R1 , and R2, we

conclude (x,y) ( Vi (only AbsentNotSeen is possible on the x axis). .",
(2) if op(M) = Update(xy), then using Hi: if(xy) ( Vj then there must exist e E such .

that Earlier(Ce), e --* 1, and op(e) = Update(x,y') wherey" e y , ft

By lemma 3. when(e) < when(e)
By definition then Earlier(e,) and thus (xzy) E V4

(3) .-.By (1) and (2). (zy) E V.V.

.4
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• V.

Lemma 5

Let i E E such that i -. e*, op(M.) {Insert(xj,), Update(xy)}. In addition, assume i is the 0
event which made (xy) E *V.

Then if there exists e** E E such that # e** e*, where(e**) = where(e*), i f SS,**, and
e** is minimal, then Earlier(i,e) for all e E such that teo°(where(e)) < when(e) and op(e) .
BasicOps.

Proof

The following diagram illustrates the lemma. Chosen on the diagram are representative
Sevents for i, e e**, and e.

.. . ...... .

•

........ ........

Assume given
. I) e i SS,** means that during event e** either

case (a): Knownby for the event 6 in the SS = Allnodes
Clearly, by the table for any node j there is a path of events from
where(e) to where(e**) which includes nodej.

case (b): RemoteT(where()) - when(O) and i f RemoteSS (i.e., y.op =
AbsentSeen)
Again by the table and case (a), for any nodej there is a path of event.
from where(d) to where(e**) which includes nodej.

(2) Let e be such that te.e(where(e)) < when(e). By (1) then there must exist an event a
such that 0 -- a - e, 0 * e, a - e**, and where(a) = where(e)

.'r. (3) By lemma 3. when(t) < when(e) and thus Earlier(f,e).V
.. ,*
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Now the correctness of the algorithm is shown.

S. .~* Theorem i

(Ve'( E) (uiew(e) Vel

Proof

Again we use a diagram to help illustrate the proof. Chosen on the diagram are
representative events for i, e*, e*, e and e'.

e . .....

ee
ee

% ,

e* e

V-'.

Assume (x.y) e vew(e')
(1) By VI and V2 . there exists i E such that

(a) e - e ,op() ( {Insertax,y), Update(x,y) and
(b) (Ve)[Removed(e.) =* - (e-. e') 1"""

(2) Thus by (I b) there can not exist an e E E such that Remoued(e.O) and e -e'

(3) By lemma 4. (x,y) ( V N. 'k
(4) Let us assume (x,y) E V,..-
(5) Let e* ( E be such that e - e* - e', (xy) * ,V, (xy) if V,-, with 0 the event which

made (xy) E *V, and minimal
,* (6) If(xy') f V,,for any y' ( W, then by the table there must exist e E E such that op(e)

= Delete(x) and e -* e*. Thus Removed(ei), a contradiction
(7) If(xy') ( Ve,for some y' ( W, (y' * y) then by lemma 2 and R2 there must exist e ( E

(8) such that op(e) = Update(xy') and e --. e*
(8) Either op(f) = Inaert(xj) or op(i) = Update(zy)

if op(e) =Updte(zj') and op(e) = Inser4x~) then Removed(e,), a
contradiction

_ if op(e) =Update(xzy') and op(g) =Update(xy) then by the table (tel axis y:
Update; [el axis X: Update, AbsentSeen, AbsentNotSeen)

t.,. .. .. . ..
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Update/Update: (x,y') EV,* only if Earlier(c;,e), • Removed(e,e), a
contradiction

Update/A bsentSeen: by definition, i f *.SS, and when4'e) s #.t(where(e)).
This is impossible by the minimality of e*

Update/A bsentNotSeen: by definition, 4 9 e.SS, and whent'e) > .. t(where(e)).
Therefore there must exist e** E E such that it is
minimal and e --* e** - e* - e, with where(e**) =
where(e*). and e f SSe*."
By lemma I. e*t(where(e)) a! tee(where(e)). Thus
when(e) > te**(where(e)). Finally by lemma 5.
Earlier(Ue) and .. Removed(e,0), a contradiction

(9) Thus (x,y) E V,.

D Assume (x,y) E V.-
(1) By lemma 2. there exists E E such that 4- e',ope)E {nsert(xy), Update(xy)} and

is responsible for placing (xy) into V,'
(2) Assume there exists an e ( E such that Removed(e.e) and e - e'
(3) Let e* ( E be minimal such that e- e* -- e'and i-, e.
(4) By inspection of the resolution table we know that once an event's item is removed

from V that same event's item can not be returned to the database. Thus by (1), (2). P
and (3). (xy) E V,.

(5) Clearly, op(e) {Update(xy'), Delete(x)}

if op(e) = Delete(x) then (x,y) f Vt,. a contradiction.
if op(e) = Update(x.y') and op(d) = Insert(x.y) then (x.y') E Ve , so (x,y) E Ve a
contradiction.
if op(e) = Update(xy') and op(e) =Update(x,y) and Earlier(d,e) then by the table
clearly (x,y) ( V, so (x.y) f V. a contradiction.

(6) By (5) then there can not exist an e E E such that Removed(e,i) and e -e'. Thus, (Ve)
[Removed(e.) = ", (e-- e')

(7) • By (1) and (6). VI and V2 hold fore'. Thus (xy)E view(e').V . ""

Now the fact that the views are mutually consistent is shown.

Corollary

If sufficient correct communication between nodes occurs, and changes to the data cease (no * S.,,

events from the BasicOps), then all database views will converge to contain the same data.

Proof

Consider the theorem and a sequence of events which are taken only from OtherOps. If
Transmit and Receive operations are occasionally performed on every node and a
communication path exists between every node, then the corollary follows.V

4

.. .. . .. .. ....-........ '............



Page 178 Replicated Data Appendix I

. Summary

This paper has presented a suite of decentralized algorithms for maintaining distributed replicated %
data of the type which is usually found in directories or dictionaries. The algorithms are robust and
are intuitively easy to understand. Although they do not attempt to guarantee serial consistency,
they are adequate for many simple data storage problems. The algorithms require little support from
the communication system (basically only that if a message is delivered, it is ungarbled).
Applications which may benefit from the type of algorithms presented include mail systems, naming
servers, appointment calendars, certain types of file dictionaries, operating system load data
maintenance and distributed process control systems. The main approach taken to accomplish the
goals of the algorithms (availability, performance, and simplicity) involves custom-tailoring the
algorithms to the special requirements of client applications. This tailoring is simplified by using
resolution tables which specify the resolution strategy for action conflicts. The correctness condition -
for one of the algorithms was defined and the algorithm was proved to be correct. g
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APPEN'DIX J "".

FACILITIES FOR SUPPORTING ATOMICITY IN OPERATING SYST KS

Jmes N llobhin
-. !.. N~Mrtin S. Moa[endryV"" .

Abstract

One of the problems fundamental to operating systemns is maintaining the atomicity of a sequence of
operations despite concurrent activity or system/client failures. Atomic actions have been used for
this purpose in database systems and recently in programming languages. This paper introduces
support for atomicity in the kernel or an operating system. This support is not limited to managing
just one type of data (e.g., files) and could be used to ensure that any action (or task) be accomplished
atomically on a set of user definable objects. The atomicity framework presented uses processes.

--" actions, and objects. Requirements for atomicity are discussed and system primitives are defined
which include the ability to create and terminate nested actions, control concurrency between
actions, and recover from action aborts. The facilities presented provide system designers and
progrommers with the ability to control consistency requirements using whatever semantic
knowledge is available The atomicity thus attained is called semantic atomicity. Unlike other work,
we do not tightly bind processes to actions, thus allowing the facilities presented to be applicable to a
wide cla of systems (including applications where actions are supported by cooperating processes).
One particular approach for integration of the facilities is discussed related to the Clouds
decentralized global operating systemn. The desirability for semantic atomicity is illustrated through ".,,"

a file directory system example. Use of the facilities to address the problem of actions supported bw y.
cooperating processes is also illustrated through an example.
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1. Introduction

Much of the recent work concerning reliability and data integrity in systems has focused on atomic
actions (atomic transactions) (Gray78, Davi78, Kswa761. We will refer to atomic actions simply as
actions throughout this paper. Actions represent tasks which must be accomplished indivisibly. As
such they form the basic units of both recovery and concurrency control and can be characterized h.
two properties:

, failure atomicity: either all results of an action are applied to the objects referenced by the
action or none are applied

" concurrency atomicity: the effect of executing actions concurrently must be the same as if each
,- action executed indivisibly (i.e.. atomically). Thus, an action's steps can

be interleaved with other actions' steps so long as the result appears the
same as if the actions were run serially. That is, the execution sequence
is correct if it is serializable [Eswa76).

Actions can terminate either abnormally (by aborting) or normally (by committing). Actions which
are ti-ed within other actions fur failure containment reasons are called nested actions IDavi73,
Red78, MossSl, Lync831. Nested actions appear atomic to the surrounding action or scope. That is.
both of the atomicity properties above apply, but become relative to the current nesting scope. Thus
nested actions fail independently of each other and the surrounding action, but commitment depends
on the surrounding action to commit. During execution an action activation tree is naturally formed
Nodes in the tree are actions and edges represent nesting relationships When a nested action is
created, it becomes a child of the surrounding or pmrent action. All the immediate children ofa parent
action are siblings. Ancestors of some action x represent the set oractions which completely define the -.- 4

scope ofx: these include the action x and all actions on the path to the root action (including the root :,
'. action). Descendant actions are similarly defined.

* 4.', ..--

An action which is not nested is called a permanent action because if the action completes normally,

changes by the action are permanently applied. Permanent actions are root nodes in the action
activation tree. Changes made by a nested action are considered temporary until the permanent root
action commits. If an action (or nested action) aborts, then all descendants of the action are aborted
(maintaining failure atomicity). Unless specifically qualified, the term action will denote both

-. permanent and nested actions.

Action support is relatively commonplace in distributed data storage systems using several different
implementation approaches (e.g., [Svob8l, Lamp8l 1). However, most other application areas tend to
use a variety of specialized ad hoe techniques to attain the atomicity properties of actions when they .
are required. One apparent reason why ad hoc approaches are used is that object types are usually
defined a priori by the action facility. Different data granule sizes may be used, but facilities do not
exist which allow arbitrary objects to be defined and operated upon by actions. Many simply use disk
pages or files. For example, suppose that it is desired to operate upon a specialized queue, a set, a file,
a tree-based file directory and a storage allocation module atomically. In any system which rigidly "
structures objects, this becomes either impossible or exceeding expensive because these general
objects must be mapped onto the supported objects (e.g., disk pages). Thus an extensible
(programming) environment for managing actions is desired. Other research addressing extensible
environments include [Lome77, Lisk82, Reedg2.

Extensible schemes which have been proposed have used atomic actions to structure processes (e g..
[Lome77, LiskS21). This approach is a very convenient structuring methodology, but it can not
address certain system problems. In particular, communicating processes [Dijk68I are incongruent

.%
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with this structure, even though the processes may be cooperating to perform some action. (Consider
a producer/consumer example with unbounded message stream where both producer and consumer
are actions.) Processes, performing actions, in this structuring approach can communicate only after
one of the actions has committed. This, however, is clearly impossible if the processes must O
communicate to complete the actions. Unlike these prior extensible schemes we address action
structure and processes independently and do not bind actions tightly to particular processes The

above mentioned problems are then avoided.I
Although atomic action, address certain problem areas well, there are environments where the
atomicity properties stated above are either too strong or inappropriate, It is well known that . "
serializahilitv is too restrictive for certain applications ILamp76, Garc821. In some sense a more
general form of atomicity is involved in these applications. This is usually directly related to having
more semantic information available [Kung79, Papa791. However, trading serializability for
performance has been noted as well IFisc82, Jens82. McKe83l. Different levels of consistency have
been discussed by Gray lGray75l, but these levels are oriented toward a simple data framework As
such, the consistency degrees suggested are not sufficient to capture the lower levels of' consistency
available in a general setting. In this light, a general atomicity support system should permit
different degrees of atomicity to capture the necessary correctness conditions, without being overly
restrictive.

We are investigating atomicity mechanisms which can he embedded in operating systems and
hardware to allow applications, as well as certain portions of the operating system, to benefit from the

common facilities. We believe that integration of extensible facilities for achieving atomicity into an
operating system is quite novel. Even though atomicity support for data storage (in particular files)
has been suggested, our work involves a much more radical integration such that arbitrary aspects of
an operating system or application can be structured using actions. We specifically desire not to limit
what task an action may perform. For example, we do not want the only objects which can be
supported to be storage pages. While this is acceptable for integration of action facilities for storage
systems like files or databases, we instead desire a general programming environment for actions
where the properties of actions can be defined over any part of the system. Thus, the objects that an
action may manipulate may be programmable. Each object referenced could further use nested

" 0 actions when manipulating other objects. The atomicity which we desire in this environment we will
call semantic atomicity, as opposed to the absolute atomicity of the conventional approach. That is,
the meaning of atomicity depends on precisely what the action is attempting to do [AlIc821. The
concept of semantic atomicity encompasses the notion of absolute atomicity as stated above.

One uniform structuring approach for systems uses data abstraction and the object model [Jone79!.
Within this paper, we will structure the world accordingly. We consider this choice to be neither
universally good nor bad; and the basic concepts presented for providing atomicity facilities are not
limited to this particular view Message-based systems may approach certain aspects of the atomicitv
problem differently (e.g., assigning processes to actions), but the fundamental aspects of the atomicit.-
facilities presented appear adequate. Thus our contribution spans both message-based and
procedure-based systems.

This paper describes the general system architecture we propose for managing atomicity, the
. synchronization and recovery facilities we provide, and how these mechanisms might be incorporated

into an actual system. As an example environment, we use the Clouds [McKc831 decentralized global
operating system currently under construction for a local area network of Three Rivers Perq
computers. We believe that atomicity is particularly important for distributed systems because of the
independent failure modes of the nodes. Semantic atomicity is also important because of the desire in
distributed operating systems to sacrifice consistency for performance lJens82, McKe831

Section 2 details some of the requirements which must be addressed by any atomicity facilities
incorporated into an operating system kernel. Our system model and the general atomicity ...

% .* .% . -• ,., ..'.., 'e v:,.' .'', ,' "'_'',,' ." ..', ". " ", " -...'.'-" ". "" ."". . ."." .''..': ,-", ,"". ". ". . . .".".. ." " ." . .' .' .'..".6 ..



Page 184 Atomicity in Operating Systems Appendix J

.r *e primitives we propose are presented in Section 3. Section 4 discusses how these primitives might be
incorporated into an object-based system. Section 5 and 6 contain examples (5 illustrates
synchronization and recovery in a directory object including operations which implement semantic
atomicity and 6 illustrates an action performed by cooperating processes communicating through

*messages). Substantial additional information is available in [Allc83j.

2. Atomicitv Requirements

Compared to datdhaae systems, operating systems contain entities with more complex semantics .
.. While automatic support for atomicity is highly desirable, it may be more efficient in many cases to

provide the systems' constructors with the tools necessary to build atomic actions. This seems
reasonable for operating systems and system applications because the writers are usually quite

*-", knowledgeable ahout the semantics of the system and can probably provide (cheaper) atomicity using
these tools. From these tools, automatic action support could be constructed for specific application
areas (e.g., databa.se systems, object repositories, action-based languages, etc.). Thus the approach of
providing synchronization and recovery tools appears promising.

The tools approoch has a tacit assumption concerning the reasons for recovery Errors, unexpected
. .,, conditions (stch as oftware modules failing to meet their specification), can not be handled with this

approach. We, however, are much more concerned with fuilures. (expected, although undesirable,
conditions--for example, node and network failures, access rights violations, or process faults such as
division by zero) Thus, unlike recovery blocks and conversations IRand78, Russ80, Shri781, failures
must be anticioated.

As discussed in Section i, it is important to address semantic atomicity. Consider a file directory.
Most clients of the directory do not cure when a listing is made if they see transient (uncommitted)
changes. Forcing operations of this type to be atomic will result in low levels of concurrency on the
directory. Of course, a file-backup client of the directory may insist on seeing a serial view. Thus,
what is acceptable depends on the semantics of use. In many cases it is possible in operating systems
to know a priori these requirements and thus (if the facilities were available) take advantage of these
semantics.

It is also important not to exclude cooperating processes from the atomicity support. In fact, it
appears desirahle in operating systems to not automatically assign actions to processes. Instead a
more dynamic scheme is required which will allow one process to support many actions or several %

, - .cooperating processes to support one action (e.g., the client/server model with cooperating servers fits
this paradigm).

In general there are five areas of support necessary for atomicity. First, there must be some method
for the users to create and terminate actions. Second, there should he synchronization facilities (in
addition to process synchronization) which can be used by processes to maintain the atomicity
requirement between actions (concurrency atomicity). Locks and timestamps lKohl8lj are typical
synchronization tools used in database systems for this purpose. Third, there must be recovery
facilities which permit flexible management of data necessary to recover the action to a consistent
state (failure atomicity). Logs IGray78l containing either before or after images (or both) have ._
typically been used for this purpose in database systems. In nested action environments automatic
propagation of synchronization and recovery information to the parent action is also desirable. .,,....

Fourth, because the support for atomicity is not performed completely automatically, there must be
facilities which permit user defined processing on the transition of an action to another state (eg. "-"-
performing recovery on the operation - abort transition). Finally, there must be process agreement . -.

@9 facilities which allow the processes performing an action to reach a consensus, despite failures,
concerning action state transitions (particularly the operation -. commit transition).

.- * '.2 "-,
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3. System Primitives for Supporting Atomicity

3.1 System Model

Physically we view the environment as composed of nodes and an interconnection network. The nodes
communicate through messages sent through the network. The nodes contain two different types of -
memory: volatile and permanent. Nodes may crash (fail) erasing the contents of volatile memory, but
without disturbing permanent memory. When a crash occurs we assume that all processing stops and
that random messages and random changes to permanent memory do not occur. The network is also

• ->" unreliable and can lose, duplicate, or re-order transmitted messages Messages if delivered, however, . :'
must arrive ungarbled. That is, message corruption must be detectable.

There are three logical entities in the system: processes, objects, and actions. Processes are active
. agents which execute at a single node. Processes may be directly created and terminated only

through the kernel at that node. Node failures can indirectly terminate a process. Actions are units
of concurrency and recovery. Actions may span node boundaries and may he concurrently performed
at several nodes. The node where an action is created is considered the coordinator node for the
action. Actions, via processes, manipulate ob jects. An object may be considered to be an instance of a
generalized abstract data type (even though not necessarily implemented this way) which can only be
operated upon through well-defined operations. During an action, objects referenced must not be "
moved from the node where the action first referenced the objects. If an object is moved between
nodes, no action may operate upon the object during the migration.

Processes, actions, and objects are identified through processids, actionids and objectids.
Maintenance of process identification is assumed external to the action support environment,
however it is assumed that the identification is unique within the node where the process is created.
Action identification must be unique across all nodes. Action identifiers are provided by the action -
support primitives discussed in Section 3.2. Object identification need only be unique within the node -
where the object is located for the action support facilities. Even though system-wide uniqueness is wa.""
not required by the action facilities specifically, it may be necessary for other aspects of particular
systems (e.g.. if objects can be globally addressed). One kernel primitive is provided to generate
unique objectids; this could be changed appropriately to achieve the uniqueness required. %

!" " Normally processes do not recover from node failures. However, we require a special kernel primitive .- '-.

which allows processes to be automatically restarted at some location following a node crash. That is,
on restarting the system after a failure a checkpointed process will resume at some user definable .-

" location with certain variables re-initialized to checkpointed values. This is necessary to guarantee " " -

correct processing of the action state transitions.

- .. .-a

3.2 Action Creation, Use, and Termination

Action creation is performed through the following kernel function: "-. ",.

function create action (actiontype: (permanent, nested), parent : actionid) : actionid ." -.- -

The actionid is an index into a kernel-protected action identification table. This table, one local to 0
each node, contains information concerning the state of the known actions, which processes are
performing the action, and which objects have been affected by the action. Processes are free to store ,,..

d
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the actionid as desired (or even pass it). In a production implementation, capabilities which associate -"

processes to actions would probably be necessary. The actiontype parameter specifies whether the
action should be created as a permanent action (no nesting) or relative to the specified parent action.
It is possible that the parent does not exist anymore and in this case the caller receives an error on .

*. * invocation.

Processes muY execute on behalf of only one action at a time; binding actions to processes is performed
dynamically Assuming the action specified still exists, a process can become linked to the action
through the following kernel call:

procedure link (newaction actionid)

This dynamic assignment permits processes to manage several actions, if desired. This ability is
particularly attractive for server processes managing several user actions, for example. Linking to
an action x automatically unlinks any action y currently linked to the process. A null actionid is
available to unlink the p-ocess from all actions.

It may be necessary to determine what actionid is currently linked to a process. This is useful for the
• , synchronization discussed below. I

1} ~~function ticffiI actionid '"- i

Termination (commitment or abortion) of an action is performed as shown below. Both procedures
can return errors if the action does not exist (e.g.. already aborted). If a process terminates, then all
actions associated with the process (determined from the action identification table) are aborted.
(Recall we are not addressing software errors.) Both of the termination procedures operate on the
action currently linked to the invoking process.

If a nested action'is being committed, all synchronization state and recovery logs are inherited by the
action's parent (because the child has completed). If a nested action has visited remote nodes, a one-
phase distributed commitment protocol is begun. If a permanent action has visited remote nodes, a
two-phase commit protocol is used [Gray781. Once all recovery information is safely stored in
permanent memory, special user-definable procedures are performed to complete the commit
processing (see below). The timelimit associated with the commit procedure is useful when multiple War"

- '."processes are cooperating on an action. If the associated processes do not request commitment within
: the specified duration, then instead of committing, the action is aborted. All cooperating processes

.0%,' must agree that the action is complete by executing the commit primitive before final commitment
occurs. Thus, we avoid the domino effect IRand781.

procedure commit (timelimit: timedurationtpe) ,

procedure abort "

" . As a process, on behalf of an action, accesses an object, a series of events occur. These events are
diagrammed in Figure 1. Special client procedures can be defined for all three of the special events:
BOA (beginning of action), EOA (end of action), and Abort. .

Processes must inform the kernel when a new object on the current node has been referenced. In
addition, the processing code for the events of BOA, EOA, and Abort must be defined for this object. If

-. special event processing is not required for one or all of these, a special procedure name of none can be
used. The same event procedure code can be shared by several objects if the processing required is the
same. Event procedures can not use actions during their processing. Processes inform the kernel of -0
the referenced objects through the following primitive:

'%'-..I '""..- , -

I.-
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BOA 24 operton s EOA(c jrrij)

Figure 1 Action Events Related to Objects

procedure touchobJect (object: objectid, boa, eoa, abort: procedure);

The first time touchobject is executed for an action/object pair, the operating system updates the list of
objects referenced by that action. This is used to execute the associated event procedures on
termination of the action. The event procedures which may be defined are

BOA beginning of action.
This procedure is performed immediately following the invocation of the
touchohjrct primitive assuming that this is the first time this object has been
touch'd h the current action.

EOA enl ofac hin (commit).
The E)A code is executed after the recovery area is safely stored in permanent
storage following permanent action commitment; it is not executed on nested
action commitment. This event processing procedure must be written in an
idempotent manner. That is, it may be (re)executed many times due to system
failures and any complete execution must be correct regardless of prior partial
executions. prior

Abort abort action. -"--
Once an action has been aborted by a process, the Abort code associated with all
objects touched by the action is executed. The Abort event does not occur if volatile
memory fails. This is explained further in Section 3.4.

Even though these are specified as procedures here. this same event scheme could be used in a
message-based system. This could be accomplished by defining event messages (possibly by
exceptions or emergency messages) to represent these action state changes and requiring each
process to appropriately handle the events.

If a process transmits an actionid to a remote node while processing an action, the local kernel must
be informed which node was accessed. This information is used for coordinating action state

... transitions. The following kernel call is used to inform the local kernel of the access. If the process
does not actually access the remote node for some reason after executing this call, it is unimportant
since the atomicity system will discover this from the remote node during action termination.

procedure offnode (remotenode nodeid);

The last kernel primitive permits processes to request the state of an action. This is particularly
%€ useful when multiple processes, working cooperatively on some action, must reach agreement before

deciding whether to abort or commit. This can be used in the implementation of the conversation
concept IRand781. Section 6 illustrates this primitive in a cooperating process environment. -.- -

procedure notify (action: actionid; state: (active, aborted, complete, unknown))

These primitives are sufficient to manage both permanent and nested actions in an elegant manner

.... . .,. -• . -. -. % . % *. .. , % % . . . , • • - -. • . . . . . % ". -• *. % " - - *. % ". % .% " % . • % °
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For example, even in a nested user action it is possible to perform a controlled violation of the current -.'"'N
action nesting for maintaining operating system state data (e.g., process queues). In addition, I
intrinsic to the system is the concept of cooperating processes performing an action. This is a natural
extension to the use of cohorts [Gray78l in distributed database systems, where a transaction has a
support process (a cohort) on each node it visits.

.' .. '• .1
m

3.3 Action Synchronization Facilities

Processes may need to perform specialized synchronization with respect to one another if they are
linked to actions. It is possible to control action synchronization via most any general process
synchronization scheme, because processes have access to actionids and also have the ability to
determine those conditions that constitute a conflict. However, for convenience and efficiency, we
propose common action synchronization mechanisms be available in the kernel. This does not
prevent coding specific synchronization as necessary to obtain additional concurrency (e.g
lLamp76l). We provide two basic action activation tree synchronization mechanisms: multi-mode
locking and counting semaphores.

3.3 1 Action-based Multi mod, L.ocking

* -.:: ILocks I Eswa761 are a reasonable choice for one mechanism, because there are many concurrent data--.
structure maintenance algorithms in operating systems which use a locking model (e.g., [Kwon821)
Our approach requires a lock compatibility table to be defined before lock operations can be used. The
goal is to provide a framework more general than simple read/write locking modes. The directory
example presented in Section 5 illustrates why this approach is desirable.

The lock domain, mode compatibilities, and the lock protocol used are determined by the process
defining them. By associating a domain with each lock type, it is possible to solve the phantom
problem I.swa761 That is, entities do not have to exist at the time they are locked. Again, the . -

directory example illustrates the significance of this. By allowing programmers to control lock
protocols, coordination schemes such as non-two-phase protocols can be used [Moha821, driven by the
semantics of the accessing pattern. Below are the locking operations.

modetype = integer, (system dependent
lockidtype = integer: (system dependent} , -.

% instanceidtype = integer; (system dependent} '"',
comp tibilities = record

moderequesting "modetype;
compatibleset set of modetype;

end;

procedure defineconflict (lockid: lockidtype; accesstable" set ofcompatibilities)
function setlock (lockid: lockidtype; thing: instanceidtype; m: modetype; timeout integerl

(okfirsttime, okothertimes, timeout, invalid) , - '.-

PIP function testlock (lockid : lockidtype; thing: instanceidtype; m: modetype; aid : actionid)
(ok, conflict, invalid)

function releaselock (lockid: lockidtype; thing: instanceidtype; m : modetype)
. (ok, notset, invalid)

function releaseall (lockid. lockidtype) . (ok, invalid)

" .Suppose a process requests a lock in some mode n and is linked to action x. If only ancestor actions of
974 x from the action tree hold incompatible lock modes to m, the lock is set. For example, in the simple

shared read I exclusive write situation, only x's ancestors can hold write mode locks and still permit x

Zp
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to obtain a write lock. As actions commit the ownership of the locks propagate to the immediate I
parent action. If a setlock is executed and the lock cannot be set because of mode incompatibilities,
the process is suspended until the lock can be set or until a timeout occurs. Once x operates on some

lock, x's ancestors may not touch that lock until x terminates.

The special status indicators of okfirstime and okothertimes used in setlock are provided so that"--.'-" applications can detect when they have alreudy locked an object in the given mode This information -

is useful for determining when it is necessary to save the state of the object through the recovery
facilities

3.3.2 Action-based Counting Semaphores

Locking as presented above allows actions to avoid one another in order to achieve serializability. It
is also desirable in some cases to have the ability to apply additional ordering constraints For
example, guaranteeing one sibling will execute before another appears to be a common prol; 'see
for instance the example in Section 4.1). Our work is novel in generalizing ac I tree
synchronization in this manner.-,-'\ h-.--

In a nested action environment semaphore values are managed according to the visibilit, an
action has depending on the action's location in the action activation tree. Thus an action t. ,, ,e a
V value from an ancestor, but not from an sibling. Upon commitment the changes to the semaphore
are appropriately propagated. If the action aborts, the borrowed V values from it's ancestors are
returned. Thus this mechanism is an extension of standard counting semphores to the realm of
reliable computing in a nested action environment. As with the locking mechanism presented above.
once a child executes a semaphore operation on some semaphore, no ancestor may reference that

-J",. semaphore until the child completes. If processes are cooperating performing some action, then
because they will be using the same actionid, the action-based semnaphores become equivalent to
standard semaphores. Further details and the associated algorithms are included in lAllc831. The

J. P operations are shown below:

semaidtype = integer; {system dependent)
%- ' .

' function definesemaphore (initialvalue: integer): semaidtype
function destroysemaphore (semaid : semaidtype): (ok, invalid)

,- ,', function actionP (semaid: semaidtype; timeout integer): (ok, timeout, invalid)
":.,,:function actionV(semaid semaidtype) : (ok, invalid)

3.3.3 Guaranteeing Progress

Specific support for deadlock and livelock is not provided by the kernel. Appropriate system structure ,.-
and associated lock and semaphore protocols can prevent deadlock in many cases. Ilowever, if

- "deadlocks can occur in the system, the responsibility for appropriate action lies with the irnplementor
(using timeouts, etc.). If locking were the only mechanism used for action synchronization, then
deadlock detection would be straightforward (although probably expensive). However, as discussed "
above, processes may perform specialized synchronization between actions without using locks. This
makes the problem extremely difficult because it may not be possible to determine which actions
another action may be waiting for. We will not discuss this further here.

3.4 Action Recovery Facilities

Logging appears to be a reasonable method for maintaining action recovery information. To support
Irv' logging, system primitives are available to write and read records associated with action/object pairs. %

' ., .,.-f'.-:,
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During the life of an action, records may be written to the log If the action aborts, the log is deletedI
after the Abort processing event is complete. If the action commits, the log is inherited by the action's
parent This involves no data movement from the recovery log, simply a notation to be made
regarding which action owns the log. If the action is permanent, then the log is placed on permanent
storage Each node maintains a local log for any action known at that node and each saves their
portion of the complete log during commitment. After the logs are safely stored, the event EOA
occurs. The log is automatically discarded upon completion of the event EOA

Any information desired may be placed in the log. Ilowever, because the log for an action does not
become saved in permanent memory until the associated permanent action commits, recovery from
an action abort cannot require the log to recover across a volatile memory failure. In general, though,
we suspect that assuming actions will complete is the proper assumption for operating systems and
many applications. This optimsitic viewpoint dictates that changes be made to the current version of
shared entities using the log to maintain the unaltered version This approach results in much of the
overhead associated with supporting actions to be tied to abort and not commitment.

During the first write by an action to the log for some object, the log is orficially created. To notify the •
recovery facility that the log records should be returned, a reset operation is used. If the items to be
saved are memory pages, then it is possible to integrate some of the logging system with the memory
rman,igrmcnt sNsvtem (e g , by manipulating page tables) The log write, read, and reset primitives are
defined below

procedure writelug (object objectid. <array of items to save, length and address >)

procedure r.'adlog (object: ohjectid,
< array of addresses of where to place returned items >, status (ok, endoflog)) .. '.'.."

procedure resetlog (object objectid)

One possible extension of the recovery facilities involves client-controlled checkpointing of the log
into a staging area of permanent memory during nested action commitment. Hfowever, this can
become expensive when multiple nodes are involved forcing two-phase commitment to be used during
every action commitment. iowever, for long running actions, this may be necessary. The general
approach in this case would be to subdivide the long running action into a group of nested actions

. which could checkpointed upon completion. The parent action would simply guarantee that the
changes would only become visible if the entire task was accomplished.

3.5 Implementation Structures

Shown below is a rough sketch (Figure 2) of the structure necessary to support the facilities discussed
,-. above

4. One Possible Application Using the Primitives
SThis section describes how the system primitives defined above might be incorporated into an actual

. -. operating system. The approach used in Clouds [McKe831 is to define a programming language (a '
Pascal derivative) which has specific support for actions and atomicity. The compiler converts the

% language constructs into the necessary system primitives. The language approach is convenient
because it organizes the atomicity primitives into a uniform structure and removes some of the causes
for errors in their use.

.- % -'- -:- -.-
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., nodes visited by action

.cteoned

j.0

or logs, locks, semaphores info
objects touched on this node objec .s

touched

general info:%

* ~parentid li
a'. state object lobecti object object%

processids event event event event ro "
etc. ninfo [a n o info info

Figure 2 Conceptual Data Structures

In Clouds, an object type is a globally-namned generalization of an abstract data type which can only
be operated upon through well-defined operations. An object is an instance of some object type.
Objects are distributable in Clouds and may reside anywhere in the network. For the purposes ofthis
paper we will consider only objects which support actions (viz.. support recovery and action
synchronization). Objects in this class can be considered to be composed of three basic components:
the data portion (data and the operations on the data), synchronization necessary for shared access,
and recovery control. In addition, some object state may be kept in permanent memory in order to
survive volatile memory failures. Figure 3 illustrates a conceptual internal structure of an object.

- Nested actions can be used to specify units of synchronization and recovery. Each object type
operation can be denoted as an action definition (similar to [Lome77]). Action atomicity is used to

2V. transform the state of the objects referenced in the action into a new (consistent) state. Semantic
atomicity is desired for all actions and it is the responsibility of each object type to ensure that
appropriate abstract behavior is provided.

Object definers can control synchronization among actions by specification statements which are
provided when an object type is defined. An access statement is used to specify the object operation
compatibility necessary to arbitrate access between actions. These operation compatibilities are . '
managed using generalized locking modes (possibly one for each object procedure) to ensure the "
specification. The locks are managed through a two-phase locking technique which ensures that
serializable abstract behavior can be achieved. The locks are held until action termination.
Incompatibility betwen a requesting action and an accessing action of some object causes the ,

VP.: requesting action's process to block until some specified timeout occurs or access is allowed.
p%'. *.%*

To force a certain path or order of executions of the procedures by actions, the order statement can be
used. The format of this statement is similar to path expressions ICamp741 and can be directly

--, ' . compiled into operations on action-based semaphores. Sequencing (, repetition (n:), and alternation

,,o. %N .. %* * -,"
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~ y V operation invocations
- - .-- * .-

synchronization
control local data permanent

Synchronization monitor -

.~~ ~ ~ ~~ ..;i .! . ~ ..' ... "- .
•.

* operation (or action)i I::,.

operation (or action)2 ..',:"" .--

operation (or action)n

BOA (beginning of action)
O f. .' ' ......

EOA (end of action:commit)
#6, ... ... .::... ... ........: i:: : :: ," " -

Abort:-:

Figure 3 Data Object Structure -

(,) can be specified in the order statement. .

Object definers are additionally provided with the tools necessary to synchronize action access to local
data within the object. This is accomplished by using a sync monitor similar to a standard -

synchronization monitor [illoar74l. It can be used to control mutually exclusive access to local
variables within an object. Any object procedures can be placed into the monitor. Synchronization
within the sync monitor is possible through statements which allow events to be waited upon and
signalled. Programming arbit-ary action synchronization is possible through the synchronization
monitor and via lock statements which are directly compiled into lock system primitives. Thus a dual
approach for action synchronization is provided: static specification when an object type is defined
and dynamic programming tools to address special problems. This generality permits the tradeoffs of
simplicity and performance to be adequately addressed. The synchronization facilities are discussed
in more detail in Section 4 1.

Each object type contains special procedures to manage the action events of BOA, EOA, and Abort.
The compiler generates some additional setup code for these procedures, but in general they behave
in the same manner as discussed in Section 3.1. Each object type can also define variables which
must be made permanent upon commitment of a permanent action. .

In the Clouds object framework, actions can be organized naturally by objects which reference
operations (which may be nested actions) on other (conceptually lower level) objects. For example,
consider the object types shown in Figure 4. When a createfile operation is executed the getspace and
createentry actions compose to form the createfile action.

'6 
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[createfile action begin file object type storage object typegetspace 
_-"_______"_"

e 
'O

createentry
end P gepae action begin

Fend

deletefile action beginen
dele teen try
putspace

end putspace action begin ..-

0
createe  action begin end

end

I deletentry action begin

end directory object type

Figure 4 Natural Nesting Example

Invocation of object operations by a process is performed by procedure call. -

<capability for object instance>. <operation> (<parameters>) [weak I
[exception

<cause, > <statement list>
<cause2> <statement list>
others <statement list>

end I

By default the call is reliable and is performed in a manner which ensures "once and only once"
semantics (even if the target object is located on a remote node) lSpec81 1. The calling process waits
for completion of the call or until an exception is raised (e.g., timeout). If the target object does not
support actions, an error is returned if the executing process is acting on behalf of an action. If an
action has been linked to the executing process, the compiler generates code to notify the kernel
accordingly (through touchnbject). This is used to return to the objects upon commit or abort of the
action (refer to the EOA and Abort events discussed above). The optional keyword weak specifies '--"'"

that no value is to be returned and that if the target object is on another node in the network, then
only one send need be performed (no waiting); the transmission is assumed unreliable. The operation
therefore can be executed zero or at most one time. This option can not be used if the executing
process is linked to an action. If an exception (e.g., timeout) is raised and actions were created during
the invocation, then these actions are aborted.

4.1 Action Synchronization

The access specification, as discussed above, is used to state the object type operation compatibilitiesin order to arbitrate access between actions, Incompatibility, a conflict, causes requesting actions to• ,"'..

.. ,...-A. ...
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wait for the conflict to be removed (or until some specified timeout occurs). The general form of the . . .,.

specification follows:

<compatibility>::= <mode requestingl>: [<mode held,> .... <mode held,>l 

access = (<compatibility, >; ... <compatibility,, >)

For example, access = (read [readl; write 1 I) represents the usual one writer / multiple reader
synchronization assuming that there are two operations on the object type (read and write).
Locks can be declared and then manipulated via the system primitives discussed in Section 3.3. The O

format of the declaration follows:

lockvariable • lock (<compatibility> >" <compatibilitym>) domain = instanceidtype

The order specification is used to state specific orderings among the operations which must be
enforced. Since this is similar to path expressions, only an example will be given here. Consider a ...
spool queue with the operations of enter and remove. Assume there can be only n entries in the queue
maximum and that we desire remove operations to wait if no enter operation has been committed

-. •relative to the action invoking the remove operation. The specification might be given as fol lows:

order = n . (enter; remove)

This specification enforces that at least one enter is committed before a remove operation is allowed
and that at most n enter operations can be performed before a remove is committed.

,p-. 4.2. Recovery Facilities

* The recovery facilities are again very similar to the corresponding system primitives. However,
specifying the objectid is not required (supplied by the runtime system) and each log record is typed . -.

by a variable placed first in the log record which contains the name of the operation which performed
.r , the writelog. The format then is

save (< varl >, < var 2 >, <varn >) (corresponding to writelog}

restore ( < logrectype>, <var1 >, <var 2 >. < var>) corresponding to readhlg"

5. A Directory Example

5'.J.* For convenience in this example we will use the language notations presented in Section 4. The
%-.. %4 purpose of the example, however, is not to defend particular language constructs, but rather to
N., %. illustrate the use of the atomicity facilities. In following we analyze how a directory object type might
.. ' .. be defined using the facilities presented in this paper. We show two possible approaches using

different levels of sophistication to achieve different amounts of concurrency. The first approach
requires only an access statement to control action interleavings. The second requires an

.-.a- alternative specification and minor programming, but achieves higher concurrency. A more formal
treatment of this design process in presented in [Allc831. ..

"' Suppose we wish to create an action-based directory object (such as the one shown in Figure 4 with
A dd and Delete substituted accordingly) with the following operations:

*9.--'- Add(k : key; v: value): status

........................................... . '.
*lop %-
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Delete(k: key): status
Lookup(k : key): status, value
ListSerial(currentkey: key) : status, value, nextkey
ListApproz(currentkey: key) : status, value, nextkey

Let us assume that all operations other than ListApprox require a serially consistent view of the
directory, but that ListApprox has semantics such that the invoking action will accept seeing
(possibly) uncommitted changes. One possible access specification is given below.

access = ( Add : [ListApproxj; ,..
Delete : lListApprox1;
Lookup I Lookup, ListSerial, ListApproxj;
ListSerial • [Lookup, ListSerial, ListApprox];
ListApprox" (Add, Delete, Lookup, ListSerial, ListApproxl)

This specification, although correct, may not achieve an acceptable level of concurrency. Even
though two actions could correctly operate on different keys in the directory, this is not allowed by the - -
specification.

To improve concurency a different access specification could be used together with programming to
r, specifically control directory entry sharing. In the alternative specification below we only
*. ,synchronize the operation ListSerial; the other operation* can be synchronized via the built-in lock

facility.

access = (Add [Add, Delete, Lookup, ListApproxl; -
Delete [Add. Delete, Lookup, ListApproxl;
Lookup [Add, Delete. Lookup, ListSerial, ListApprox]; A'

ListSerial : [Lookup, ListSerial, ListApproxl;
ListApprox: [Add, Delete, Lookup, ListSerial, ListApprox])

We declare a lock as follows:

x: lock (read : [read1; change : I) domain = key ,-

.y*, We can then use setlock and releaselock to dynamically control action synchronization on the
directory entries. Using this approach the Add operation might appear as follows:

action Add(k: key; v: value)
begin

setlock (x, k, change, timelimit);
... put entry into the directory"
save (k, v) {implemented through writelog'

end;.

Note that we may lock instances which do not exist, thus avoiding the phantom problem and
preventing loss of serial consistency. The choice of synchronizing ListSerial at the directory level
instead of the key entry level avoids the overhead of acquiring and releasing a lock for each key. .

- Instead only one lock must be accessed. Thus, tradeoffs involving granule size are possible. The
Abort event code might appear as follows in the directory object.

entry procedure Abort;
var

k: key; v: value;
be&is
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restore (logrectype, k, v, stat);
while (stat = endoflog) do
begin

case logrectype of
add {remove entry from directory•
delete :{put entry back into directory"

end;
restore (logrectype, k, v, stat)

end,
{locks are automatically released by the runtime system using releaseall}

end.

6. A Cooperating Process Example

There are many interactions among processes which do not necessarily involve cooperation of the
processes to complete the actions the processes are performing. Consider message queues where the
receiving process is not allowed to examine messages until the sender process commits the group of
messages sent. A typical example is a spooling system where the spooler process does not see
producing processes' output until it is committed it i sense the output is cached until the commit
occurs. This situation appears quite common and can casily be supported by the atomicity facilities
presented. The language structures associated with the Clouds system also model this paradigm.

There are however, examples where multiple processes must interact to complete an action. We now
illustrate how the atomicity facilities discussed in this paper might be applied to solve this class of
problems. Presented below is a sketch of two processes which cooperatively perform an action. As

-.0,- discussed before, commitment is possible only if both processes request commitment. If one of the
processes aborts, the other one can detect this through the notify system primitive and can then abort
the action also.

Process: Process 2 :,-'.,.... create action ..

Send actionid receive actionid
link to action link to action
repeat until done repeat until done -.

check action status check action status
if action aborted, then abort if action aborted, then abort .
do work receive message
write log records as necessary do work
if error abort write log records as necessary
send message if error abort

end end

commit commit

Processl is responsible for initially creating the action; it then communicates the actionid to process2. F .,M
Both processes then link to the action and begin processing. Both processes must occasionally check
the state of the action and abort if the other process has already aborted the action. Only if both reach
commit will the action actually be committed.

The processes can define the objects in any manner that is convenient since the primitives primarily

11.I use the objectids as simply a manner to structure the logs. If the two processes manipulate the same ''
object, the first one to issue touchobject is the process responsible for performing the action event %

%IN ---.
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%- "procedures (e.g.. EOA). As desired, both processes, because they are performing the same actin, will
write to the same log. Of course, it the processes could enter a shared object concurrently, standard
process synchronization must be used. Since they are performing the same action, interference can
not be prevented by action synchronization. ...

7. Summary

This paper has explored the issues involved with integrating facilities to support atomicity into the f
kernel of an operating system. For generality these facilities should not bind actions and processes
tightly permitting either a single process or multiple processes to perform an action. It has been
suggested that a more general type of atomicity, semantic atomicity, is desirable for efficiency in some
cases. It has been proposed that system designers and programmers be given direct control over
accomplishing atomicity (both concurrency and failure). We have presented a set of requirements for "
supporting these kinds of tools. These requirements include the ability to create and terminate i
actions, to control concurrency between actions, to recover from action failures, to perform special
processing on transitions in the state of actions, and to incorporate process agreement facilities which -.
allow processes performing an action to reach a consensus concerning action state transitions. A set
of kernel primitives for atomicity was presented within a ftamework of processes, actions, and objects.
The generality for message-oriented systems was also discussed. The mechanisms appear especially
important in distributed environments. A distributed operating system environment was used to

--. / demonstrate one possible approach for actual integration of the primitives. Finally two examples
were presented: a directory system (using some semantic knowledge concerning the actions operating
on the directory) and two processes cooperatively performing an action.

Our work has addressed a fundamental problem confronting operating systems, particularly
distributed ones. It appears that a significant advance in reliability and system organization might
be possible with a well engineered set of orthogonal mechanisms to address atomicity.
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